forked-synapse/synapse/util/__init__.py
Patrick Cloke aec294ee0d
Use slots in attrs classes where possible (#8296)
slots use less memory (and attribute access is faster) while slightly
limiting the flexibility of the class attributes. This focuses on objects
which are instantiated "often" and for short periods of time.
2020-09-14 12:50:06 -04:00

166 lines
4.9 KiB
Python

# -*- coding: utf-8 -*-
# Copyright 2014-2016 OpenMarket Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import re
import attr
from twisted.internet import defer, task
from synapse.logging import context
logger = logging.getLogger(__name__)
def _reject_invalid_json(val):
"""Do not allow Infinity, -Infinity, or NaN values in JSON."""
raise ValueError("Invalid JSON value: '%s'" % val)
# Create a custom encoder to reduce the whitespace produced by JSON encoding and
# ensure that valid JSON is produced.
json_encoder = json.JSONEncoder(allow_nan=False, separators=(",", ":"))
# Create a custom decoder to reject Python extensions to JSON.
json_decoder = json.JSONDecoder(parse_constant=_reject_invalid_json)
def unwrapFirstError(failure):
# defer.gatherResults and DeferredLists wrap failures.
failure.trap(defer.FirstError)
return failure.value.subFailure
@attr.s(slots=True)
class Clock:
"""
A Clock wraps a Twisted reactor and provides utilities on top of it.
Args:
reactor: The Twisted reactor to use.
"""
_reactor = attr.ib()
@defer.inlineCallbacks
def sleep(self, seconds):
d = defer.Deferred()
with context.PreserveLoggingContext():
self._reactor.callLater(seconds, d.callback, seconds)
res = yield d
return res
def time(self):
"""Returns the current system time in seconds since epoch."""
return self._reactor.seconds()
def time_msec(self):
"""Returns the current system time in milliseconds since epoch."""
return int(self.time() * 1000)
def looping_call(self, f, msec, *args, **kwargs):
"""Call a function repeatedly.
Waits `msec` initially before calling `f` for the first time.
Note that the function will be called with no logcontext, so if it is anything
other than trivial, you probably want to wrap it in run_as_background_process.
Args:
f(function): The function to call repeatedly.
msec(float): How long to wait between calls in milliseconds.
*args: Postional arguments to pass to function.
**kwargs: Key arguments to pass to function.
"""
call = task.LoopingCall(f, *args, **kwargs)
call.clock = self._reactor
d = call.start(msec / 1000.0, now=False)
d.addErrback(log_failure, "Looping call died", consumeErrors=False)
return call
def call_later(self, delay, callback, *args, **kwargs):
"""Call something later
Note that the function will be called with no logcontext, so if it is anything
other than trivial, you probably want to wrap it in run_as_background_process.
Args:
delay(float): How long to wait in seconds.
callback(function): Function to call
*args: Postional arguments to pass to function.
**kwargs: Key arguments to pass to function.
"""
def wrapped_callback(*args, **kwargs):
with context.PreserveLoggingContext():
callback(*args, **kwargs)
with context.PreserveLoggingContext():
return self._reactor.callLater(delay, wrapped_callback, *args, **kwargs)
def cancel_call_later(self, timer, ignore_errs=False):
try:
timer.cancel()
except Exception:
if not ignore_errs:
raise
def log_failure(failure, msg, consumeErrors=True):
"""Creates a function suitable for passing to `Deferred.addErrback` that
logs any failures that occur.
Args:
msg (str): Message to log
consumeErrors (bool): If true consumes the failure, otherwise passes
on down the callback chain
Returns:
func(Failure)
"""
logger.error(
msg, exc_info=(failure.type, failure.value, failure.getTracebackObject())
)
if not consumeErrors:
return failure
def glob_to_regex(glob):
"""Converts a glob to a compiled regex object.
The regex is anchored at the beginning and end of the string.
Args:
glob (str)
Returns:
re.RegexObject
"""
res = ""
for c in glob:
if c == "*":
res = res + ".*"
elif c == "?":
res = res + "."
else:
res = res + re.escape(c)
# \A anchors at start of string, \Z at end of string
return re.compile(r"\A" + res + r"\Z", re.IGNORECASE)