mirror of
https://mau.dev/maunium/synapse.git
synced 2024-10-01 01:36:05 -04:00
105 lines
3.3 KiB
Python
105 lines
3.3 KiB
Python
#
|
|
# This file is licensed under the Affero General Public License (AGPL) version 3.
|
|
#
|
|
# Copyright (C) 2023 New Vector, Ltd
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU Affero General Public License as
|
|
# published by the Free Software Foundation, either version 3 of the
|
|
# License, or (at your option) any later version.
|
|
#
|
|
# See the GNU Affero General Public License for more details:
|
|
# <https://www.gnu.org/licenses/agpl-3.0.html>.
|
|
#
|
|
# Originally licensed under the Apache License, Version 2.0:
|
|
# <http://www.apache.org/licenses/LICENSE-2.0>.
|
|
#
|
|
# [This file includes modifications made by New Vector Limited]
|
|
#
|
|
#
|
|
from typing import TYPE_CHECKING, Any, Dict, Type, TypeVar
|
|
|
|
import jsonschema
|
|
|
|
from synapse._pydantic_compat import HAS_PYDANTIC_V2
|
|
|
|
if TYPE_CHECKING or HAS_PYDANTIC_V2:
|
|
from pydantic.v1 import BaseModel, ValidationError, parse_obj_as
|
|
else:
|
|
from pydantic import BaseModel, ValidationError, parse_obj_as
|
|
|
|
from synapse.config._base import ConfigError
|
|
from synapse.types import JsonDict, StrSequence
|
|
|
|
|
|
def validate_config(
|
|
json_schema: JsonDict, config: Any, config_path: StrSequence
|
|
) -> None:
|
|
"""Validates a config setting against a JsonSchema definition
|
|
|
|
This can be used to validate a section of the config file against a schema
|
|
definition. If the validation fails, a ConfigError is raised with a textual
|
|
description of the problem.
|
|
|
|
Args:
|
|
json_schema: the schema to validate against
|
|
config: the configuration value to be validated
|
|
config_path: the path within the config file. This will be used as a basis
|
|
for the error message.
|
|
|
|
Raises:
|
|
ConfigError, if validation fails.
|
|
"""
|
|
try:
|
|
jsonschema.validate(config, json_schema)
|
|
except jsonschema.ValidationError as e:
|
|
raise json_error_to_config_error(e, config_path)
|
|
|
|
|
|
def json_error_to_config_error(
|
|
e: jsonschema.ValidationError, config_path: StrSequence
|
|
) -> ConfigError:
|
|
"""Converts a json validation error to a user-readable ConfigError
|
|
|
|
Args:
|
|
e: the exception to be converted
|
|
config_path: the path within the config file. This will be used as a basis
|
|
for the error message.
|
|
|
|
Returns:
|
|
a ConfigError
|
|
"""
|
|
# copy `config_path` before modifying it.
|
|
path = list(config_path)
|
|
for p in list(e.absolute_path):
|
|
if isinstance(p, int):
|
|
path.append("<item %i>" % p)
|
|
else:
|
|
path.append(str(p))
|
|
return ConfigError(e.message, path)
|
|
|
|
|
|
Model = TypeVar("Model", bound=BaseModel)
|
|
|
|
|
|
def parse_and_validate_mapping(
|
|
config: Any,
|
|
model_type: Type[Model],
|
|
) -> Dict[str, Model]:
|
|
"""Parse `config` as a mapping from strings to a given `Model` type.
|
|
Args:
|
|
config: The configuration data to check
|
|
model_type: The BaseModel to validate and parse against.
|
|
Returns:
|
|
Fully validated and parsed Dict[str, Model].
|
|
Raises:
|
|
ConfigError, if given improper input.
|
|
"""
|
|
try:
|
|
# type-ignore: mypy doesn't like constructing `Dict[str, model_type]` because
|
|
# `model_type` is a runtime variable. Pydantic is fine with this.
|
|
instances = parse_obj_as(Dict[str, model_type], config) # type: ignore[valid-type]
|
|
except ValidationError as e:
|
|
raise ConfigError(str(e)) from e
|
|
return instances
|