mirror of
https://mau.dev/maunium/synapse.git
synced 2024-10-01 01:36:05 -04:00
ebad618bf0
This PR changes `from pydantic import BaseModel` to `from synapse._pydantic_compat import BaseModel` (as well as `constr`, `conbytes`, `conint`, `confloat`). It allows `check_pydantic_models.py` to mock those pydantic objects only in the synapse module, and not interfere with pydantic objects in external dependencies. This should solve the CI problems for #17144, which breaks because `check_pydantic_models.py` patches pydantic models from [scim2-models](https://scim2-models.readthedocs.io/). /cc @DMRobertson @gotmax23 fixes #17659 ### Pull Request Checklist <!-- Please read https://element-hq.github.io/synapse/latest/development/contributing_guide.html before submitting your pull request --> * [x] Pull request is based on the develop branch * [x] Pull request includes a [changelog file](https://element-hq.github.io/synapse/latest/development/contributing_guide.html#changelog). The entry should: - Be a short description of your change which makes sense to users. "Fixed a bug that prevented receiving messages from other servers." instead of "Moved X method from `EventStore` to `EventWorkerStore`.". - Use markdown where necessary, mostly for `code blocks`. - End with either a period (.) or an exclamation mark (!). - Start with a capital letter. - Feel free to credit yourself, by adding a sentence "Contributed by @github_username." or "Contributed by [Your Name]." to the end of the entry. * [x] [Code style](https://element-hq.github.io/synapse/latest/code_style.html) is correct (run the [linters](https://element-hq.github.io/synapse/latest/development/contributing_guide.html#run-the-linters))
479 lines
16 KiB
Python
Executable File
479 lines
16 KiB
Python
Executable File
#! /usr/bin/env python
|
|
#
|
|
# This file is licensed under the Affero General Public License (AGPL) version 3.
|
|
#
|
|
# Copyright 2022 The Matrix.org Foundation C.I.C.
|
|
# Copyright (C) 2023 New Vector, Ltd
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU Affero General Public License as
|
|
# published by the Free Software Foundation, either version 3 of the
|
|
# License, or (at your option) any later version.
|
|
#
|
|
# See the GNU Affero General Public License for more details:
|
|
# <https://www.gnu.org/licenses/agpl-3.0.html>.
|
|
#
|
|
# Originally licensed under the Apache License, Version 2.0:
|
|
# <http://www.apache.org/licenses/LICENSE-2.0>.
|
|
#
|
|
# [This file includes modifications made by New Vector Limited]
|
|
#
|
|
#
|
|
"""
|
|
A script which enforces that Synapse always uses strict types when defining a Pydantic
|
|
model.
|
|
|
|
Pydantic does not yet offer a strict mode, but it is planned for pydantic v2. See
|
|
|
|
https://github.com/pydantic/pydantic/issues/1098
|
|
https://pydantic-docs.helpmanual.io/blog/pydantic-v2/#strict-mode
|
|
|
|
until then, this script is a best effort to stop us from introducing type coersion bugs
|
|
(like the infamous stringy power levels fixed in room version 10).
|
|
"""
|
|
|
|
import argparse
|
|
import contextlib
|
|
import functools
|
|
import importlib
|
|
import logging
|
|
import os
|
|
import pkgutil
|
|
import sys
|
|
import textwrap
|
|
import traceback
|
|
import unittest.mock
|
|
from contextlib import contextmanager
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
Generator,
|
|
List,
|
|
Set,
|
|
Type,
|
|
TypeVar,
|
|
)
|
|
|
|
from parameterized import parameterized
|
|
from typing_extensions import ParamSpec
|
|
|
|
from synapse._pydantic_compat import (
|
|
BaseModel as PydanticBaseModel,
|
|
conbytes,
|
|
confloat,
|
|
conint,
|
|
constr,
|
|
get_args,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
CONSTRAINED_TYPE_FACTORIES_WITH_STRICT_FLAG: List[Callable] = [
|
|
constr,
|
|
conbytes,
|
|
conint,
|
|
confloat,
|
|
]
|
|
|
|
TYPES_THAT_PYDANTIC_WILL_COERCE_TO = [
|
|
str,
|
|
bytes,
|
|
int,
|
|
float,
|
|
bool,
|
|
]
|
|
|
|
|
|
P = ParamSpec("P")
|
|
R = TypeVar("R")
|
|
|
|
|
|
class ModelCheckerException(Exception):
|
|
"""Dummy exception. Allows us to detect unwanted types during a module import."""
|
|
|
|
|
|
class MissingStrictInConstrainedTypeException(ModelCheckerException):
|
|
factory_name: str
|
|
|
|
def __init__(self, factory_name: str):
|
|
self.factory_name = factory_name
|
|
|
|
|
|
class FieldHasUnwantedTypeException(ModelCheckerException):
|
|
message: str
|
|
|
|
def __init__(self, message: str):
|
|
self.message = message
|
|
|
|
|
|
def make_wrapper(factory: Callable[P, R]) -> Callable[P, R]:
|
|
"""We patch `constr` and friends with wrappers that enforce strict=True."""
|
|
|
|
@functools.wraps(factory)
|
|
def wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
|
|
if "strict" not in kwargs:
|
|
raise MissingStrictInConstrainedTypeException(factory.__name__)
|
|
if not kwargs["strict"]:
|
|
raise MissingStrictInConstrainedTypeException(factory.__name__)
|
|
return factory(*args, **kwargs)
|
|
|
|
return wrapper
|
|
|
|
|
|
def field_type_unwanted(type_: Any) -> bool:
|
|
"""Very rough attempt to detect if a type is unwanted as a Pydantic annotation.
|
|
|
|
At present, we exclude types which will coerce, or any generic type involving types
|
|
which will coerce."""
|
|
logger.debug("Is %s unwanted?")
|
|
if type_ in TYPES_THAT_PYDANTIC_WILL_COERCE_TO:
|
|
logger.debug("yes")
|
|
return True
|
|
logger.debug("Maybe. Subargs are %s", get_args(type_))
|
|
rv = any(field_type_unwanted(t) for t in get_args(type_))
|
|
logger.debug("Conclusion: %s %s unwanted", type_, "is" if rv else "is not")
|
|
return rv
|
|
|
|
|
|
class PatchedBaseModel(PydanticBaseModel):
|
|
"""A patched version of BaseModel that inspects fields after models are defined.
|
|
|
|
We complain loudly if we see an unwanted type.
|
|
|
|
Beware: ModelField.type_ is presumably private; this is likely to be very brittle.
|
|
"""
|
|
|
|
@classmethod
|
|
def __init_subclass__(cls: Type[PydanticBaseModel], **kwargs: object):
|
|
for field in cls.__fields__.values():
|
|
# Note that field.type_ and field.outer_type are computed based on the
|
|
# annotation type, see pydantic.fields.ModelField._type_analysis
|
|
if field_type_unwanted(field.outer_type_):
|
|
# TODO: this only reports the first bad field. Can we find all bad ones
|
|
# and report them all?
|
|
raise FieldHasUnwantedTypeException(
|
|
f"{cls.__module__}.{cls.__qualname__} has field '{field.name}' "
|
|
f"with unwanted type `{field.outer_type_}`"
|
|
)
|
|
|
|
|
|
@contextmanager
|
|
def monkeypatch_pydantic() -> Generator[None, None, None]:
|
|
"""Patch pydantic with our snooping versions of BaseModel and the con* functions.
|
|
|
|
If the snooping functions see something they don't like, they'll raise a
|
|
ModelCheckingException instance.
|
|
"""
|
|
with contextlib.ExitStack() as patches:
|
|
# Most Synapse code ought to import the patched objects directly from
|
|
# `pydantic`. But we also patch their containing modules `pydantic.main` and
|
|
# `pydantic.types` for completeness.
|
|
patch_basemodel = unittest.mock.patch(
|
|
"synapse._pydantic_compat.BaseModel", new=PatchedBaseModel
|
|
)
|
|
patches.enter_context(patch_basemodel)
|
|
for factory in CONSTRAINED_TYPE_FACTORIES_WITH_STRICT_FLAG:
|
|
wrapper: Callable = make_wrapper(factory)
|
|
patch = unittest.mock.patch(
|
|
f"synapse._pydantic_compat.{factory.__name__}", new=wrapper
|
|
)
|
|
patches.enter_context(patch)
|
|
yield
|
|
|
|
|
|
def format_model_checker_exception(e: ModelCheckerException) -> str:
|
|
"""Work out which line of code caused e. Format the line in a human-friendly way."""
|
|
# TODO. FieldHasUnwantedTypeException gives better error messages. Can we ditch the
|
|
# patches of constr() etc, and instead inspect fields to look for ConstrainedStr
|
|
# with strict=False? There is some difficulty with the inheritance hierarchy
|
|
# because StrictStr < ConstrainedStr < str.
|
|
if isinstance(e, FieldHasUnwantedTypeException):
|
|
return e.message
|
|
elif isinstance(e, MissingStrictInConstrainedTypeException):
|
|
frame_summary = traceback.extract_tb(e.__traceback__)[-2]
|
|
return (
|
|
f"Missing `strict=True` from {e.factory_name}() call \n"
|
|
+ traceback.format_list([frame_summary])[0].lstrip()
|
|
)
|
|
else:
|
|
raise ValueError(f"Unknown exception {e}") from e
|
|
|
|
|
|
def lint() -> int:
|
|
"""Try to import all of Synapse and see if we spot any Pydantic type coercions.
|
|
|
|
Print any problems, then return a status code suitable for sys.exit."""
|
|
failures = do_lint()
|
|
if failures:
|
|
print(f"Found {len(failures)} problem(s)")
|
|
for failure in sorted(failures):
|
|
print(failure)
|
|
return os.EX_DATAERR if failures else os.EX_OK
|
|
|
|
|
|
def do_lint() -> Set[str]:
|
|
"""Try to import all of Synapse and see if we spot any Pydantic type coercions."""
|
|
failures = set()
|
|
|
|
with monkeypatch_pydantic():
|
|
logger.debug("Importing synapse")
|
|
try:
|
|
# TODO: make "synapse" an argument so we can target this script at
|
|
# a subpackage
|
|
module = importlib.import_module("synapse")
|
|
except ModelCheckerException as e:
|
|
logger.warning("Bad annotation found when importing synapse")
|
|
failures.add(format_model_checker_exception(e))
|
|
return failures
|
|
|
|
try:
|
|
logger.debug("Fetching subpackages")
|
|
module_infos = list(
|
|
pkgutil.walk_packages(module.__path__, f"{module.__name__}.")
|
|
)
|
|
except ModelCheckerException as e:
|
|
logger.warning("Bad annotation found when looking for modules to import")
|
|
failures.add(format_model_checker_exception(e))
|
|
return failures
|
|
|
|
for module_info in module_infos:
|
|
logger.debug("Importing %s", module_info.name)
|
|
try:
|
|
importlib.import_module(module_info.name)
|
|
except ModelCheckerException as e:
|
|
logger.warning(
|
|
f"Bad annotation found when importing {module_info.name}"
|
|
)
|
|
failures.add(format_model_checker_exception(e))
|
|
|
|
return failures
|
|
|
|
|
|
def run_test_snippet(source: str) -> None:
|
|
"""Exec a snippet of source code in an isolated environment."""
|
|
# To emulate `source` being called at the top level of the module,
|
|
# the globals and locals we provide apparently have to be the same mapping.
|
|
#
|
|
# > Remember that at the module level, globals and locals are the same dictionary.
|
|
# > If exec gets two separate objects as globals and locals, the code will be
|
|
# > executed as if it were embedded in a class definition.
|
|
globals_: Dict[str, object]
|
|
locals_: Dict[str, object]
|
|
globals_ = locals_ = {}
|
|
exec(textwrap.dedent(source), globals_, locals_)
|
|
|
|
|
|
class TestConstrainedTypesPatch(unittest.TestCase):
|
|
def test_expression_without_strict_raises(self) -> None:
|
|
with monkeypatch_pydantic(), self.assertRaises(ModelCheckerException):
|
|
run_test_snippet(
|
|
"""
|
|
try:
|
|
from pydantic.v1 import constr
|
|
except ImportError:
|
|
from pydantic import constr
|
|
constr()
|
|
"""
|
|
)
|
|
|
|
def test_called_as_module_attribute_raises(self) -> None:
|
|
with monkeypatch_pydantic(), self.assertRaises(ModelCheckerException):
|
|
run_test_snippet(
|
|
"""
|
|
import pydantic
|
|
pydantic.constr()
|
|
"""
|
|
)
|
|
|
|
def test_wildcard_import_raises(self) -> None:
|
|
with monkeypatch_pydantic(), self.assertRaises(ModelCheckerException):
|
|
run_test_snippet(
|
|
"""
|
|
try:
|
|
from pydantic.v1 import *
|
|
except ImportError:
|
|
from pydantic import *
|
|
constr()
|
|
"""
|
|
)
|
|
|
|
def test_alternative_import_raises(self) -> None:
|
|
with monkeypatch_pydantic(), self.assertRaises(ModelCheckerException):
|
|
run_test_snippet(
|
|
"""
|
|
try:
|
|
from pydantic.v1.types import constr
|
|
except ImportError:
|
|
from pydantic.types import constr
|
|
constr()
|
|
"""
|
|
)
|
|
|
|
def test_alternative_import_attribute_raises(self) -> None:
|
|
with monkeypatch_pydantic(), self.assertRaises(ModelCheckerException):
|
|
run_test_snippet(
|
|
"""
|
|
try:
|
|
from pydantic.v1 import types as pydantic_types
|
|
except ImportError:
|
|
from pydantic import types as pydantic_types
|
|
pydantic_types.constr()
|
|
"""
|
|
)
|
|
|
|
def test_kwarg_but_no_strict_raises(self) -> None:
|
|
with monkeypatch_pydantic(), self.assertRaises(ModelCheckerException):
|
|
run_test_snippet(
|
|
"""
|
|
try:
|
|
from pydantic.v1 import constr
|
|
except ImportError:
|
|
from pydantic import constr
|
|
constr(min_length=10)
|
|
"""
|
|
)
|
|
|
|
def test_kwarg_strict_False_raises(self) -> None:
|
|
with monkeypatch_pydantic(), self.assertRaises(ModelCheckerException):
|
|
run_test_snippet(
|
|
"""
|
|
try:
|
|
from pydantic.v1 import constr
|
|
except ImportError:
|
|
from pydantic import constr
|
|
constr(strict=False)
|
|
"""
|
|
)
|
|
|
|
def test_kwarg_strict_True_doesnt_raise(self) -> None:
|
|
with monkeypatch_pydantic():
|
|
run_test_snippet(
|
|
"""
|
|
try:
|
|
from pydantic.v1 import constr
|
|
except ImportError:
|
|
from pydantic import constr
|
|
constr(strict=True)
|
|
"""
|
|
)
|
|
|
|
def test_annotation_without_strict_raises(self) -> None:
|
|
with monkeypatch_pydantic(), self.assertRaises(ModelCheckerException):
|
|
run_test_snippet(
|
|
"""
|
|
try:
|
|
from pydantic.v1 import constr
|
|
except ImportError:
|
|
from pydantic import constr
|
|
x: constr()
|
|
"""
|
|
)
|
|
|
|
def test_field_annotation_without_strict_raises(self) -> None:
|
|
with monkeypatch_pydantic(), self.assertRaises(ModelCheckerException):
|
|
run_test_snippet(
|
|
"""
|
|
try:
|
|
from pydantic.v1 import BaseModel, conint
|
|
except ImportError:
|
|
from pydantic import BaseModel, conint
|
|
class C:
|
|
x: conint()
|
|
"""
|
|
)
|
|
|
|
|
|
class TestFieldTypeInspection(unittest.TestCase):
|
|
@parameterized.expand(
|
|
[
|
|
("str",),
|
|
("bytes"),
|
|
("int",),
|
|
("float",),
|
|
("bool"),
|
|
("Optional[str]",),
|
|
("Union[None, str]",),
|
|
("List[str]",),
|
|
("List[List[str]]",),
|
|
("Dict[StrictStr, str]",),
|
|
("Dict[str, StrictStr]",),
|
|
("TypedDict('D', x=int)",),
|
|
]
|
|
)
|
|
def test_field_holding_unwanted_type_raises(self, annotation: str) -> None:
|
|
with monkeypatch_pydantic(), self.assertRaises(ModelCheckerException):
|
|
run_test_snippet(
|
|
f"""
|
|
from typing import *
|
|
try:
|
|
from pydantic.v1 import *
|
|
except ImportError:
|
|
from pydantic import *
|
|
class C(BaseModel):
|
|
f: {annotation}
|
|
"""
|
|
)
|
|
|
|
@parameterized.expand(
|
|
[
|
|
("StrictStr",),
|
|
("StrictBytes"),
|
|
("StrictInt",),
|
|
("StrictFloat",),
|
|
("StrictBool"),
|
|
("constr(strict=True, min_length=10)",),
|
|
("Optional[StrictStr]",),
|
|
("Union[None, StrictStr]",),
|
|
("List[StrictStr]",),
|
|
("List[List[StrictStr]]",),
|
|
("Dict[StrictStr, StrictStr]",),
|
|
("TypedDict('D', x=StrictInt)",),
|
|
]
|
|
)
|
|
def test_field_holding_accepted_type_doesnt_raise(self, annotation: str) -> None:
|
|
with monkeypatch_pydantic():
|
|
run_test_snippet(
|
|
f"""
|
|
from typing import *
|
|
try:
|
|
from pydantic.v1 import *
|
|
except ImportError:
|
|
from pydantic import *
|
|
class C(BaseModel):
|
|
f: {annotation}
|
|
"""
|
|
)
|
|
|
|
def test_field_holding_str_raises_with_alternative_import(self) -> None:
|
|
with monkeypatch_pydantic(), self.assertRaises(ModelCheckerException):
|
|
run_test_snippet(
|
|
"""
|
|
try:
|
|
from pydantic.v1.main import BaseModel
|
|
except ImportError:
|
|
from pydantic.main import BaseModel
|
|
class C(BaseModel):
|
|
f: str
|
|
"""
|
|
)
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("mode", choices=["lint", "test"], default="lint", nargs="?")
|
|
parser.add_argument("-v", "--verbose", action="store_true")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args(sys.argv[1:])
|
|
logging.basicConfig(
|
|
format="%(asctime)s %(name)s:%(lineno)d %(levelname)s %(message)s",
|
|
level=logging.DEBUG if args.verbose else logging.INFO,
|
|
)
|
|
# suppress logs we don't care about
|
|
logging.getLogger("xmlschema").setLevel(logging.WARNING)
|
|
if args.mode == "lint":
|
|
sys.exit(lint())
|
|
elif args.mode == "test":
|
|
unittest.main(argv=sys.argv[:1])
|