forked-synapse/synapse/config/_util.py
Éloi Rivard ebad618bf0
import pydantic objects from the _pydantic_compat module (#17667)
This PR changes `from pydantic import BaseModel` to `from
synapse._pydantic_compat import BaseModel` (as well as `constr`,
`conbytes`, `conint`, `confloat`).

It allows `check_pydantic_models.py` to mock those pydantic objects only
in the synapse module, and not interfere with pydantic objects in
external dependencies.

This should solve the CI problems for #17144, which breaks because
`check_pydantic_models.py` patches pydantic models from
[scim2-models](https://scim2-models.readthedocs.io/).

/cc @DMRobertson @gotmax23
fixes #17659 


### Pull Request Checklist

<!-- Please read
https://element-hq.github.io/synapse/latest/development/contributing_guide.html
before submitting your pull request -->

* [x] Pull request is based on the develop branch
* [x] Pull request includes a [changelog
file](https://element-hq.github.io/synapse/latest/development/contributing_guide.html#changelog).
The entry should:
- Be a short description of your change which makes sense to users.
"Fixed a bug that prevented receiving messages from other servers."
instead of "Moved X method from `EventStore` to `EventWorkerStore`.".
  - Use markdown where necessary, mostly for `code blocks`.
  - End with either a period (.) or an exclamation mark (!).
  - Start with a capital letter.
- Feel free to credit yourself, by adding a sentence "Contributed by
@github_username." or "Contributed by [Your Name]." to the end of the
entry.
* [x] [Code
style](https://element-hq.github.io/synapse/latest/code_style.html) is
correct
(run the
[linters](https://element-hq.github.io/synapse/latest/development/contributing_guide.html#run-the-linters))
2024-09-11 21:01:43 +00:00

100 lines
3.2 KiB
Python

#
# This file is licensed under the Affero General Public License (AGPL) version 3.
#
# Copyright 2020 The Matrix.org Foundation C.I.C.
# Copyright (C) 2023 New Vector, Ltd
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# See the GNU Affero General Public License for more details:
# <https://www.gnu.org/licenses/agpl-3.0.html>.
#
# Originally licensed under the Apache License, Version 2.0:
# <http://www.apache.org/licenses/LICENSE-2.0>.
#
# [This file includes modifications made by New Vector Limited]
#
#
from typing import Any, Dict, Type, TypeVar
import jsonschema
from synapse._pydantic_compat import BaseModel, ValidationError, parse_obj_as
from synapse.config._base import ConfigError
from synapse.types import JsonDict, StrSequence
def validate_config(
json_schema: JsonDict, config: Any, config_path: StrSequence
) -> None:
"""Validates a config setting against a JsonSchema definition
This can be used to validate a section of the config file against a schema
definition. If the validation fails, a ConfigError is raised with a textual
description of the problem.
Args:
json_schema: the schema to validate against
config: the configuration value to be validated
config_path: the path within the config file. This will be used as a basis
for the error message.
Raises:
ConfigError, if validation fails.
"""
try:
jsonschema.validate(config, json_schema)
except jsonschema.ValidationError as e:
raise json_error_to_config_error(e, config_path)
def json_error_to_config_error(
e: jsonschema.ValidationError, config_path: StrSequence
) -> ConfigError:
"""Converts a json validation error to a user-readable ConfigError
Args:
e: the exception to be converted
config_path: the path within the config file. This will be used as a basis
for the error message.
Returns:
a ConfigError
"""
# copy `config_path` before modifying it.
path = list(config_path)
for p in list(e.absolute_path):
if isinstance(p, int):
path.append("<item %i>" % p)
else:
path.append(str(p))
return ConfigError(e.message, path)
Model = TypeVar("Model", bound=BaseModel)
def parse_and_validate_mapping(
config: Any,
model_type: Type[Model],
) -> Dict[str, Model]:
"""Parse `config` as a mapping from strings to a given `Model` type.
Args:
config: The configuration data to check
model_type: The BaseModel to validate and parse against.
Returns:
Fully validated and parsed Dict[str, Model].
Raises:
ConfigError, if given improper input.
"""
try:
# type-ignore: mypy doesn't like constructing `Dict[str, model_type]` because
# `model_type` is a runtime variable. Pydantic is fine with this.
instances = parse_obj_as(Dict[str, model_type], config) # type: ignore[valid-type]
except ValidationError as e:
raise ConfigError(str(e)) from e
return instances