Implement part [MSC2228](https://github.com/matrix-org/matrix-doc/pull/2228). The parts that differ are:
* the feature is hidden behind a configuration flag (`enable_ephemeral_messages`)
* self-destruction doesn't happen for state events
* only implement support for the `m.self_destruct_after` field (not the `m.self_destruct` one)
* doesn't send synthetic redactions to clients because for this specific case we consider the clients to be able to destroy an event themselves, instead we just censor it (by pruning its JSON) in the database
Purge jobs don't delete the latest event in a room in order to keep the forward extremity and not break the room. On the other hand, get_state_events, when given an at_token argument calls filter_events_for_client to know if the user can see the event that matches that (sync) token. That function uses the retention policies of the events it's given to filter out those that are too old from a client's view.
Some clients, such as Riot, when loading a room, request the list of members for the latest sync token it knows about, and get confused to the point of refusing to send any message if the server tells it that it can't get that information. This can happen very easily with the message retention feature turned on and a room with low activity so that the last event sent becomes too old according to the room's retention policy.
An easy and clean fix for that issue is to discard the room's retention policies when retrieving state.
`None` is not a valid event id, so queuing up a database fetch for it seems
like a silly thing to do.
I considered making `get_event` return `None` if `event_id is None`, but then
its interaction with `allow_none` seemed uninituitive, and strong typing ftw.
Adds new config option `cleanup_extremities_with_dummy_events` which
periodically sends dummy events to rooms with more than 10 extremities.
THIS IS REALLY EXPERIMENTAL.
There are a number of instances where a server or admin may puppet a
user to join/leave rooms, which we don't want to fail if the user has
not consented to the privacy policy. We fix this by adding a check to
test if the requester has an associated access_token, which is used as a
proxy to answer the question of whether the action is being done on
behalf of a real request from the user.
The validator was being run on the EventBuilder objects, and so the
validator only checked a subset of fields. With the upcoming
EventBuilder refactor even fewer fields will be there to validate.
To get around this we split the validation into those that can be run
against an EventBuilder and those run against a fully fledged event.
Currently when fetching state groups from the data store we make two
hits two the database: once for members and once for non-members (unless
request is filtered to one or the other). This adds needless load to the
datbase, so this PR refactors the lookup to make only a single database
hit.
`on_new_notifications` and `on_new_receipts` in `HttpPusher` and `EmailPusher`
now always return synchronously, so we can remove the `defer.gatherResults` on
their results, and the `run_as_background_process` wrappers can be removed too
because the PusherPool methods will now complete quickly enough.
First of all, avoid resetting the logcontext before running the pushers, to fix
the "Starting db txn 'get_all_updated_receipts' from sentinel context" warning.
Instead, give them their own "background process" logcontexts.
While I was going through uses of preserve_fn for other PRs, I converted places
which only use the wrapped function once to use run_in_background, to avoid
creating the function object.
We need to be careful (under python 2, at least) that when we reraise an
exception after doing some error handling, we actually reraise the original
exception rather than anything that might have been raised (and handled) during
the error handling.
There were a bunch of places where we fire off a process to happen in the
background, but don't have any exception handling on it - instead relying on
the unhandled error being logged when the relevent deferred gets
garbage-collected.
This is unsatisfactory for a number of reasons:
- logging on garbage collection is best-effort and may happen some time after
the error, if at all
- it can be hard to figure out where the error actually happened.
- it is logged as a scary CRITICAL error which (a) I always forget to grep for
and (b) it's not really CRITICAL if a background process we don't care about
fails.
So this is an attempt to add exception handling to everything we fire off into
the background.
In most cases, we limit the number of prev_events for a given event to 10
events. This fixes a particular code path which created events with huge
numbers of prev_events.