It turns out that no clients rely on server-side aggregation of `m.annotation`
relationships: it's just not very useful as currently implemented.
It's also non-trivial to calculate.
I want to remove it from MSC2677, so to keep the implementation in line, let's
remove it here.
This creates a new store method, `process_replication_position` that
is called after `process_replication_rows`. By moving stream ID advances
here this guarantees any relevant cache invalidations will have been
applied before the stream is advanced.
This avoids race conditions where Python switches between threads mid
way through processing the `process_replication_rows` method where stream
IDs may be advanced before caches are invalidated due to class resolution
ordering.
See this comment/issue for further discussion:
https://github.com/matrix-org/synapse/issues/14158#issuecomment-1344048703
Avoid an n+1 query problem and fetch the bundled aggregations for
m.reference relations in a single query instead of a query per event.
This applies similar logic for as was previously done for edits in
8b309adb43 (#11660; threads
in b65acead42 (#11752); and
annotations in 1799a54a54 (#14491).
This should fix a race where the event notification comes in over
replication before the state replication, leaving a window during
which a sync may get an incorrect list of rooms for the user.
The root node of a thread (and events related to it) are considered
"part of a thread" when validating receipts. This allows clients which
show the root node in both the main timeline and the threaded timeline
to easily send receipts in either.
Note that threaded notifications are not created for these events, these
events created notifications on the main timeline.
Implement the /threads endpoint from MSC3856.
This is currently unstable and behind an experimental configuration
flag.
It includes a background update to backfill data, results from
the /threads endpoint will be partial until that finishes.
This moves all the invalidations into a single place and de-duplicates
the code involved in invalidating caches for a given event by using
the base class method.
More prep work for asyncronous caching, also makes all process_replication_rows methods consistent (presence handler already is so).
Signed off by Nick @ Beeper (@Fizzadar)
Some experimental prep work to enable external event caching based on #9379 & #12955. Doesn't actually move the cache at all, just lays the groundwork for async implemented caches.
Signed off by Nick @ Beeper (@Fizzadar)
This should speed up push rule calculations for rooms with large numbers of local users when the main push rule cache fails.
Co-authored-by: reivilibre <oliverw@matrix.org>
This is allowed per MSC2675, although the original implementation did
not allow for it and would return an empty chunk / not bundle aggregations.
The main thing to improve is that the various caches get cleared properly
when an event is redacted, and that edits must not leak if the original
event is redacted (as that would presumably leak something similar to
the original event content).
The get_users_in_room and get_users_in_room_with_profiles
are now only invalidated when the membership of a room changes,
instead of during any state change in the room.
Empirically, this helped my server considerably when handling gaps in Matrix HQ. The problem was that we would repeatedly call have_seen_events for the same set of (50K or so) auth_events, each of which would take many minutes to complete, even though it's only an index scan.
* Make `invalidate` and `invalidate_many` do the same thing
... so that we can do either over the invalidation replication stream, and also
because they always confused me a bit.
* Kill off `invalidate_many`
* changelog
Part of #9744
Removes all redundant `# -*- coding: utf-8 -*-` lines from files, as python 3 automatically reads source code as utf-8 now.
`Signed-off-by: Jonathan de Jong <jonathan@automatia.nl>`
The function is used for two purposes: 1) for subscribers of streams to
get a token they can use to get further updates with, and 2) for
replication to track position of the writers of the stream.
For streams with a single writer the two scenarios produce the same
result, however the situation becomes complicated for streams with
multiple writers. The current `MultiWriterIdGenerator` does not
correctly handle the first case (which is not an issue as its only used
for the `caches` stream which nothing subscribes to outside of
replication).