The aim here is to get to a stage where we have a `PersistEventStore` that holds all the write methods used during event persistence, so that we can take that class out of the `DataStore` mixin and instansiate it separately. This will allow us to instansiate it on processes other than master, while also ensuring it is only available on processes that are configured to write to events stream.
This is a bit of an architectural change, where we end up with multiple classes per data store (rather than one per data store we have now). We end up having:
1. Storage classes that provide high level APIs that can talk to multiple data stores.
2. Data store modules that consist of classes that must point at the same database instance.
3. Classes in a data store that can be instantiated on processes depending on config.
* release-v1.13.0:
Don't UPGRADE database rows
RST indenting
Put rollback instructions in upgrade notes
Fix changelog typo
Oh yeah, RST
Absolute URL it is then
Fix upgrade notes link
Provide summary of upgrade issues in changelog. Fix )
Move next version notes from changelog to upgrade notes
Changelog fixes
1.13.0rc1
Documentation on setting up redis (#7446)
Rework UI Auth session validation for registration (#7455)
Fix errors from malformed log line (#7454)
Drop support for redis.dbid (#7450)
By persisting the user interactive authentication sessions to the database, this fixes
situations where a user hits different works throughout their auth session and also
allows sessions to persist through restarts of Synapse.
* Factor out functions for injecting events into database
I want to add some more flexibility to the tools for injecting events into the
database, and I don't want to clutter up HomeserverTestCase with them, so let's
factor them out to a new file.
* Rework TestReplicationDataHandler
This wasn't very easy to work with: the mock wrapping was largely superfluous,
and it's useful to be able to inspect the received rows, and clear out the
received list.
* Fix AssertionErrors being thrown by EventsStream
Part of the problem was that there was an off-by-one error in the assertion,
but also the limit logic was too simple. Fix it all up and add some tests.
Figuring out how to correctly limit updates from this stream without dropping
entries is far more complicated than just counting the number of rows being
returned. We need to consider each query separately and, if any one query hits
the limit, truncate the results from the others.
I think this also fixes some potentially long-standing bugs where events or
state changes could get missed if we hit the limit on either query.
Occasionally we could get a federation device list update transaction which
looked like:
```
[
{'edu_type': 'm.device_list_update', 'content': {'user_id': '@user:test', 'device_id': 'D2', 'prev_id': [], 'stream_id': 12, 'deleted': True}},
{'edu_type': 'm.device_list_update', 'content': {'user_id': '@user:test', 'device_id': 'D1', 'prev_id': [12], 'stream_id': 11, 'deleted': True}},
{'edu_type': 'm.device_list_update', 'content': {'user_id': '@user:test', 'device_id': 'D3', 'prev_id': [11], 'stream_id': 13, 'deleted': True}}
]
```
Having `stream_ids` which are lower than `prev_ids` looks odd. It might work
(I'm not actually sure), but in any case it doesn't seem like a reasonable
thing to expect other implementations to support.
This changes the replication protocol so that the server does not send down `RDATA` for rows that happened before the client connected. Instead, the server will send a `POSITION` and clients then query the database (or master out of band) to get up to date.