Refactor MSC2716 /batch_send endpoint into separate handler functions (#10974)

This commit is contained in:
Eric Eastwood 2021-10-08 18:35:00 -05:00 committed by GitHub
parent 1b112840d2
commit a7d22c36db
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 494 additions and 292 deletions

1
changelog.d/10974.misc Normal file
View File

@ -0,0 +1 @@
Refactor [MSC2716](https://github.com/matrix-org/matrix-doc/pull/2716) `/batch_send` mega function into smaller handler functions.

View File

@ -0,0 +1,423 @@
import logging
from typing import TYPE_CHECKING, List, Tuple
from synapse.api.constants import EventContentFields, EventTypes
from synapse.appservice import ApplicationService
from synapse.http.servlet import assert_params_in_dict
from synapse.types import JsonDict, Requester, UserID, create_requester
from synapse.util.stringutils import random_string
if TYPE_CHECKING:
from synapse.server import HomeServer
logger = logging.getLogger(__name__)
class RoomBatchHandler:
def __init__(self, hs: "HomeServer"):
self.hs = hs
self.store = hs.get_datastore()
self.state_store = hs.get_storage().state
self.event_creation_handler = hs.get_event_creation_handler()
self.room_member_handler = hs.get_room_member_handler()
self.auth = hs.get_auth()
async def inherit_depth_from_prev_ids(self, prev_event_ids: List[str]) -> int:
"""Finds the depth which would sort it after the most-recent
prev_event_id but before the successors of those events. If no
successors are found, we assume it's an historical extremity part of the
current batch and use the same depth of the prev_event_ids.
Args:
prev_event_ids: List of prev event IDs
Returns:
Inherited depth
"""
(
most_recent_prev_event_id,
most_recent_prev_event_depth,
) = await self.store.get_max_depth_of(prev_event_ids)
# We want to insert the historical event after the `prev_event` but before the successor event
#
# We inherit depth from the successor event instead of the `prev_event`
# because events returned from `/messages` are first sorted by `topological_ordering`
# which is just the `depth` and then tie-break with `stream_ordering`.
#
# We mark these inserted historical events as "backfilled" which gives them a
# negative `stream_ordering`. If we use the same depth as the `prev_event`,
# then our historical event will tie-break and be sorted before the `prev_event`
# when it should come after.
#
# We want to use the successor event depth so they appear after `prev_event` because
# it has a larger `depth` but before the successor event because the `stream_ordering`
# is negative before the successor event.
successor_event_ids = await self.store.get_successor_events(
[most_recent_prev_event_id]
)
# If we can't find any successor events, then it's a forward extremity of
# historical messages and we can just inherit from the previous historical
# event which we can already assume has the correct depth where we want
# to insert into.
if not successor_event_ids:
depth = most_recent_prev_event_depth
else:
(
_,
oldest_successor_depth,
) = await self.store.get_min_depth_of(successor_event_ids)
depth = oldest_successor_depth
return depth
def create_insertion_event_dict(
self, sender: str, room_id: str, origin_server_ts: int
) -> JsonDict:
"""Creates an event dict for an "insertion" event with the proper fields
and a random batch ID.
Args:
sender: The event author MXID
room_id: The room ID that the event belongs to
origin_server_ts: Timestamp when the event was sent
Returns:
The new event dictionary to insert.
"""
next_batch_id = random_string(8)
insertion_event = {
"type": EventTypes.MSC2716_INSERTION,
"sender": sender,
"room_id": room_id,
"content": {
EventContentFields.MSC2716_NEXT_BATCH_ID: next_batch_id,
EventContentFields.MSC2716_HISTORICAL: True,
},
"origin_server_ts": origin_server_ts,
}
return insertion_event
async def create_requester_for_user_id_from_app_service(
self, user_id: str, app_service: ApplicationService
) -> Requester:
"""Creates a new requester for the given user_id
and validates that the app service is allowed to control
the given user.
Args:
user_id: The author MXID that the app service is controlling
app_service: The app service that controls the user
Returns:
Requester object
"""
await self.auth.validate_appservice_can_control_user_id(app_service, user_id)
return create_requester(user_id, app_service=app_service)
async def get_most_recent_auth_event_ids_from_event_id_list(
self, event_ids: List[str]
) -> List[str]:
"""Find the most recent auth event ids (derived from state events) that
allowed that message to be sent. We will use this as a base
to auth our historical messages against.
Args:
event_ids: List of event ID's to look at
Returns:
List of event ID's
"""
(
most_recent_prev_event_id,
_,
) = await self.store.get_max_depth_of(event_ids)
# mapping from (type, state_key) -> state_event_id
prev_state_map = await self.state_store.get_state_ids_for_event(
most_recent_prev_event_id
)
# List of state event ID's
prev_state_ids = list(prev_state_map.values())
auth_event_ids = prev_state_ids
return auth_event_ids
async def persist_state_events_at_start(
self,
state_events_at_start: List[JsonDict],
room_id: str,
initial_auth_event_ids: List[str],
app_service_requester: Requester,
) -> List[str]:
"""Takes all `state_events_at_start` event dictionaries and creates/persists
them as floating state events which don't resolve into the current room state.
They are floating because they reference a fake prev_event which doesn't connect
to the normal DAG at all.
Args:
state_events_at_start:
room_id: Room where you want the events persisted in.
initial_auth_event_ids: These will be the auth_events for the first
state event created. Each event created afterwards will be
added to the list of auth events for the next state event
created.
app_service_requester: The requester of an application service.
Returns:
List of state event ID's we just persisted
"""
assert app_service_requester.app_service
state_event_ids_at_start = []
auth_event_ids = initial_auth_event_ids.copy()
for state_event in state_events_at_start:
assert_params_in_dict(
state_event, ["type", "origin_server_ts", "content", "sender"]
)
logger.debug(
"RoomBatchSendEventRestServlet inserting state_event=%s, auth_event_ids=%s",
state_event,
auth_event_ids,
)
event_dict = {
"type": state_event["type"],
"origin_server_ts": state_event["origin_server_ts"],
"content": state_event["content"],
"room_id": room_id,
"sender": state_event["sender"],
"state_key": state_event["state_key"],
}
# Mark all events as historical
event_dict["content"][EventContentFields.MSC2716_HISTORICAL] = True
# Make the state events float off on their own so we don't have a
# bunch of `@mxid joined the room` noise between each batch
fake_prev_event_id = "$" + random_string(43)
# TODO: This is pretty much the same as some other code to handle inserting state in this file
if event_dict["type"] == EventTypes.Member:
membership = event_dict["content"].get("membership", None)
event_id, _ = await self.room_member_handler.update_membership(
await self.create_requester_for_user_id_from_app_service(
state_event["sender"], app_service_requester.app_service
),
target=UserID.from_string(event_dict["state_key"]),
room_id=room_id,
action=membership,
content=event_dict["content"],
outlier=True,
prev_event_ids=[fake_prev_event_id],
# Make sure to use a copy of this list because we modify it
# later in the loop here. Otherwise it will be the same
# reference and also update in the event when we append later.
auth_event_ids=auth_event_ids.copy(),
)
else:
# TODO: Add some complement tests that adds state that is not member joins
# and will use this code path. Maybe we only want to support join state events
# and can get rid of this `else`?
(
event,
_,
) = await self.event_creation_handler.create_and_send_nonmember_event(
await self.create_requester_for_user_id_from_app_service(
state_event["sender"], app_service_requester.app_service
),
event_dict,
outlier=True,
prev_event_ids=[fake_prev_event_id],
# Make sure to use a copy of this list because we modify it
# later in the loop here. Otherwise it will be the same
# reference and also update in the event when we append later.
auth_event_ids=auth_event_ids.copy(),
)
event_id = event.event_id
state_event_ids_at_start.append(event_id)
auth_event_ids.append(event_id)
return state_event_ids_at_start
async def persist_historical_events(
self,
events_to_create: List[JsonDict],
room_id: str,
initial_prev_event_ids: List[str],
inherited_depth: int,
auth_event_ids: List[str],
app_service_requester: Requester,
) -> List[str]:
"""Create and persists all events provided sequentially. Handles the
complexity of creating events in chronological order so they can
reference each other by prev_event but still persists in
reverse-chronoloical order so they have the correct
(topological_ordering, stream_ordering) and sort correctly from
/messages.
Args:
events_to_create: List of historical events to create in JSON
dictionary format.
room_id: Room where you want the events persisted in.
initial_prev_event_ids: These will be the prev_events for the first
event created. Each event created afterwards will point to the
previous event created.
inherited_depth: The depth to create the events at (you will
probably by calling inherit_depth_from_prev_ids(...)).
auth_event_ids: Define which events allow you to create the given
event in the room.
app_service_requester: The requester of an application service.
Returns:
List of persisted event IDs
"""
assert app_service_requester.app_service
prev_event_ids = initial_prev_event_ids.copy()
event_ids = []
events_to_persist = []
for ev in events_to_create:
assert_params_in_dict(ev, ["type", "origin_server_ts", "content", "sender"])
event_dict = {
"type": ev["type"],
"origin_server_ts": ev["origin_server_ts"],
"content": ev["content"],
"room_id": room_id,
"sender": ev["sender"], # requester.user.to_string(),
"prev_events": prev_event_ids.copy(),
}
# Mark all events as historical
event_dict["content"][EventContentFields.MSC2716_HISTORICAL] = True
event, context = await self.event_creation_handler.create_event(
await self.create_requester_for_user_id_from_app_service(
ev["sender"], app_service_requester.app_service
),
event_dict,
prev_event_ids=event_dict.get("prev_events"),
auth_event_ids=auth_event_ids,
historical=True,
depth=inherited_depth,
)
logger.debug(
"RoomBatchSendEventRestServlet inserting event=%s, prev_event_ids=%s, auth_event_ids=%s",
event,
prev_event_ids,
auth_event_ids,
)
assert self.hs.is_mine_id(event.sender), "User must be our own: %s" % (
event.sender,
)
events_to_persist.append((event, context))
event_id = event.event_id
event_ids.append(event_id)
prev_event_ids = [event_id]
# Persist events in reverse-chronological order so they have the
# correct stream_ordering as they are backfilled (which decrements).
# Events are sorted by (topological_ordering, stream_ordering)
# where topological_ordering is just depth.
for (event, context) in reversed(events_to_persist):
await self.event_creation_handler.handle_new_client_event(
await self.create_requester_for_user_id_from_app_service(
event["sender"], app_service_requester.app_service
),
event=event,
context=context,
)
return event_ids
async def handle_batch_of_events(
self,
events_to_create: List[JsonDict],
room_id: str,
batch_id_to_connect_to: str,
initial_prev_event_ids: List[str],
inherited_depth: int,
auth_event_ids: List[str],
app_service_requester: Requester,
) -> Tuple[List[str], str]:
"""
Handles creating and persisting all of the historical events as well
as insertion and batch meta events to make the batch navigable in the DAG.
Args:
events_to_create: List of historical events to create in JSON
dictionary format.
room_id: Room where you want the events created in.
batch_id_to_connect_to: The batch_id from the insertion event you
want this batch to connect to.
initial_prev_event_ids: These will be the prev_events for the first
event created. Each event created afterwards will point to the
previous event created.
inherited_depth: The depth to create the events at (you will
probably by calling inherit_depth_from_prev_ids(...)).
auth_event_ids: Define which events allow you to create the given
event in the room.
app_service_requester: The requester of an application service.
Returns:
Tuple containing a list of created events and the next_batch_id
"""
# Connect this current batch to the insertion event from the previous batch
last_event_in_batch = events_to_create[-1]
batch_event = {
"type": EventTypes.MSC2716_BATCH,
"sender": app_service_requester.user.to_string(),
"room_id": room_id,
"content": {
EventContentFields.MSC2716_BATCH_ID: batch_id_to_connect_to,
EventContentFields.MSC2716_HISTORICAL: True,
},
# Since the batch event is put at the end of the batch,
# where the newest-in-time event is, copy the origin_server_ts from
# the last event we're inserting
"origin_server_ts": last_event_in_batch["origin_server_ts"],
}
# Add the batch event to the end of the batch (newest-in-time)
events_to_create.append(batch_event)
# Add an "insertion" event to the start of each batch (next to the oldest-in-time
# event in the batch) so the next batch can be connected to this one.
insertion_event = self.create_insertion_event_dict(
sender=app_service_requester.user.to_string(),
room_id=room_id,
# Since the insertion event is put at the start of the batch,
# where the oldest-in-time event is, copy the origin_server_ts from
# the first event we're inserting
origin_server_ts=events_to_create[0]["origin_server_ts"],
)
next_batch_id = insertion_event["content"][
EventContentFields.MSC2716_NEXT_BATCH_ID
]
# Prepend the insertion event to the start of the batch (oldest-in-time)
events_to_create = [insertion_event] + events_to_create
# Create and persist all of the historical events
event_ids = await self.persist_historical_events(
events_to_create=events_to_create,
room_id=room_id,
initial_prev_event_ids=initial_prev_event_ids,
inherited_depth=inherited_depth,
auth_event_ids=auth_event_ids,
app_service_requester=app_service_requester,
)
return event_ids, next_batch_id

View File

@ -15,13 +15,12 @@
import logging
import re
from http import HTTPStatus
from typing import TYPE_CHECKING, Awaitable, List, Tuple
from typing import TYPE_CHECKING, Awaitable, Tuple
from twisted.web.server import Request
from synapse.api.constants import EventContentFields, EventTypes
from synapse.api.constants import EventContentFields
from synapse.api.errors import AuthError, Codes, SynapseError
from synapse.appservice import ApplicationService
from synapse.http.server import HttpServer
from synapse.http.servlet import (
RestServlet,
@ -32,7 +31,7 @@ from synapse.http.servlet import (
)
from synapse.http.site import SynapseRequest
from synapse.rest.client.transactions import HttpTransactionCache
from synapse.types import JsonDict, Requester, UserID, create_requester
from synapse.types import JsonDict
from synapse.util.stringutils import random_string
if TYPE_CHECKING:
@ -77,102 +76,12 @@ class RoomBatchSendEventRestServlet(RestServlet):
def __init__(self, hs: "HomeServer"):
super().__init__()
self.hs = hs
self.store = hs.get_datastore()
self.state_store = hs.get_storage().state
self.event_creation_handler = hs.get_event_creation_handler()
self.room_member_handler = hs.get_room_member_handler()
self.auth = hs.get_auth()
self.room_batch_handler = hs.get_room_batch_handler()
self.txns = HttpTransactionCache(hs)
async def _inherit_depth_from_prev_ids(self, prev_event_ids: List[str]) -> int:
(
most_recent_prev_event_id,
most_recent_prev_event_depth,
) = await self.store.get_max_depth_of(prev_event_ids)
# We want to insert the historical event after the `prev_event` but before the successor event
#
# We inherit depth from the successor event instead of the `prev_event`
# because events returned from `/messages` are first sorted by `topological_ordering`
# which is just the `depth` and then tie-break with `stream_ordering`.
#
# We mark these inserted historical events as "backfilled" which gives them a
# negative `stream_ordering`. If we use the same depth as the `prev_event`,
# then our historical event will tie-break and be sorted before the `prev_event`
# when it should come after.
#
# We want to use the successor event depth so they appear after `prev_event` because
# it has a larger `depth` but before the successor event because the `stream_ordering`
# is negative before the successor event.
successor_event_ids = await self.store.get_successor_events(
[most_recent_prev_event_id]
)
# If we can't find any successor events, then it's a forward extremity of
# historical messages and we can just inherit from the previous historical
# event which we can already assume has the correct depth where we want
# to insert into.
if not successor_event_ids:
depth = most_recent_prev_event_depth
else:
(
_,
oldest_successor_depth,
) = await self.store.get_min_depth_of(successor_event_ids)
depth = oldest_successor_depth
return depth
def _create_insertion_event_dict(
self, sender: str, room_id: str, origin_server_ts: int
) -> JsonDict:
"""Creates an event dict for an "insertion" event with the proper fields
and a random batch ID.
Args:
sender: The event author MXID
room_id: The room ID that the event belongs to
origin_server_ts: Timestamp when the event was sent
Returns:
The new event dictionary to insert.
"""
next_batch_id = random_string(8)
insertion_event = {
"type": EventTypes.MSC2716_INSERTION,
"sender": sender,
"room_id": room_id,
"content": {
EventContentFields.MSC2716_NEXT_BATCH_ID: next_batch_id,
EventContentFields.MSC2716_HISTORICAL: True,
},
"origin_server_ts": origin_server_ts,
}
return insertion_event
async def _create_requester_for_user_id_from_app_service(
self, user_id: str, app_service: ApplicationService
) -> Requester:
"""Creates a new requester for the given user_id
and validates that the app service is allowed to control
the given user.
Args:
user_id: The author MXID that the app service is controlling
app_service: The app service that controls the user
Returns:
Requester object
"""
await self.auth.validate_appservice_can_control_user_id(app_service, user_id)
return create_requester(user_id, app_service=app_service)
async def on_POST(
self, request: SynapseRequest, room_id: str
) -> Tuple[int, JsonDict]:
@ -200,111 +109,9 @@ class RoomBatchSendEventRestServlet(RestServlet):
errcode=Codes.MISSING_PARAM,
)
# For the event we are inserting next to (`prev_event_ids_from_query`),
# find the most recent auth events (derived from state events) that
# allowed that message to be sent. We will use that as a base
# to auth our historical messages against.
(
most_recent_prev_event_id,
_,
) = await self.store.get_max_depth_of(prev_event_ids_from_query)
# mapping from (type, state_key) -> state_event_id
prev_state_map = await self.state_store.get_state_ids_for_event(
most_recent_prev_event_id
)
# List of state event ID's
prev_state_ids = list(prev_state_map.values())
auth_event_ids = prev_state_ids
state_event_ids_at_start = []
for state_event in body["state_events_at_start"]:
assert_params_in_dict(
state_event, ["type", "origin_server_ts", "content", "sender"]
)
logger.debug(
"RoomBatchSendEventRestServlet inserting state_event=%s, auth_event_ids=%s",
state_event,
auth_event_ids,
)
event_dict = {
"type": state_event["type"],
"origin_server_ts": state_event["origin_server_ts"],
"content": state_event["content"],
"room_id": room_id,
"sender": state_event["sender"],
"state_key": state_event["state_key"],
}
# Mark all events as historical
event_dict["content"][EventContentFields.MSC2716_HISTORICAL] = True
# Make the state events float off on their own
fake_prev_event_id = "$" + random_string(43)
# TODO: This is pretty much the same as some other code to handle inserting state in this file
if event_dict["type"] == EventTypes.Member:
membership = event_dict["content"].get("membership", None)
event_id, _ = await self.room_member_handler.update_membership(
await self._create_requester_for_user_id_from_app_service(
state_event["sender"], requester.app_service
),
target=UserID.from_string(event_dict["state_key"]),
room_id=room_id,
action=membership,
content=event_dict["content"],
outlier=True,
prev_event_ids=[fake_prev_event_id],
# Make sure to use a copy of this list because we modify it
# later in the loop here. Otherwise it will be the same
# reference and also update in the event when we append later.
auth_event_ids=auth_event_ids.copy(),
)
else:
# TODO: Add some complement tests that adds state that is not member joins
# and will use this code path. Maybe we only want to support join state events
# and can get rid of this `else`?
(
event,
_,
) = await self.event_creation_handler.create_and_send_nonmember_event(
await self._create_requester_for_user_id_from_app_service(
state_event["sender"], requester.app_service
),
event_dict,
outlier=True,
prev_event_ids=[fake_prev_event_id],
# Make sure to use a copy of this list because we modify it
# later in the loop here. Otherwise it will be the same
# reference and also update in the event when we append later.
auth_event_ids=auth_event_ids.copy(),
)
event_id = event.event_id
state_event_ids_at_start.append(event_id)
auth_event_ids.append(event_id)
events_to_create = body["events"]
inherited_depth = await self._inherit_depth_from_prev_ids(
prev_event_ids_from_query
)
# Figure out which batch to connect to. If they passed in
# batch_id_from_query let's use it. The batch ID passed in comes
# from the batch_id in the "insertion" event from the previous batch.
last_event_in_batch = events_to_create[-1]
batch_id_to_connect_to = batch_id_from_query
base_insertion_event = None
# Verify the batch_id_from_query corresponds to an actual insertion event
# and have the batch connected.
if batch_id_from_query:
# All but the first base insertion event should point at a fake
# event, which causes the HS to ask for the state at the start of
# the batch later.
prev_event_ids = [fake_prev_event_id]
# Verify the batch_id_from_query corresponds to an actual insertion event
# and have the batch connected.
corresponding_insertion_event_id = (
await self.store.get_insertion_event_by_batch_id(
room_id, batch_id_from_query
@ -316,7 +123,48 @@ class RoomBatchSendEventRestServlet(RestServlet):
"No insertion event corresponds to the given ?batch_id",
errcode=Codes.INVALID_PARAM,
)
pass
# For the event we are inserting next to (`prev_event_ids_from_query`),
# find the most recent auth events (derived from state events) that
# allowed that message to be sent. We will use that as a base
# to auth our historical messages against.
auth_event_ids = await self.room_batch_handler.get_most_recent_auth_event_ids_from_event_id_list(
prev_event_ids_from_query
)
# Create and persist all of the state events that float off on their own
# before the batch. These will most likely be all of the invite/member
# state events used to auth the upcoming historical messages.
state_event_ids_at_start = (
await self.room_batch_handler.persist_state_events_at_start(
state_events_at_start=body["state_events_at_start"],
room_id=room_id,
initial_auth_event_ids=auth_event_ids,
app_service_requester=requester,
)
)
# Update our ongoing auth event ID list with all of the new state we
# just created
auth_event_ids.extend(state_event_ids_at_start)
inherited_depth = await self.room_batch_handler.inherit_depth_from_prev_ids(
prev_event_ids_from_query
)
events_to_create = body["events"]
# Figure out which batch to connect to. If they passed in
# batch_id_from_query let's use it. The batch ID passed in comes
# from the batch_id in the "insertion" event from the previous batch.
last_event_in_batch = events_to_create[-1]
base_insertion_event = None
if batch_id_from_query:
batch_id_to_connect_to = batch_id_from_query
# All but the first base insertion event should point at a fake
# event, which causes the HS to ask for the state at the start of
# the batch later.
fake_prev_event_id = "$" + random_string(43)
prev_event_ids = [fake_prev_event_id]
# Otherwise, create an insertion event to act as a starting point.
#
# We don't always have an insertion event to start hanging more history
@ -327,10 +175,12 @@ class RoomBatchSendEventRestServlet(RestServlet):
else:
prev_event_ids = prev_event_ids_from_query
base_insertion_event_dict = self._create_insertion_event_dict(
sender=requester.user.to_string(),
room_id=room_id,
origin_server_ts=last_event_in_batch["origin_server_ts"],
base_insertion_event_dict = (
self.room_batch_handler.create_insertion_event_dict(
sender=requester.user.to_string(),
room_id=room_id,
origin_server_ts=last_event_in_batch["origin_server_ts"],
)
)
base_insertion_event_dict["prev_events"] = prev_event_ids.copy()
@ -338,7 +188,7 @@ class RoomBatchSendEventRestServlet(RestServlet):
base_insertion_event,
_,
) = await self.event_creation_handler.create_and_send_nonmember_event(
await self._create_requester_for_user_id_from_app_service(
await self.room_batch_handler.create_requester_for_user_id_from_app_service(
base_insertion_event_dict["sender"],
requester.app_service,
),
@ -353,92 +203,17 @@ class RoomBatchSendEventRestServlet(RestServlet):
EventContentFields.MSC2716_NEXT_BATCH_ID
]
# Connect this current batch to the insertion event from the previous batch
batch_event = {
"type": EventTypes.MSC2716_BATCH,
"sender": requester.user.to_string(),
"room_id": room_id,
"content": {
EventContentFields.MSC2716_BATCH_ID: batch_id_to_connect_to,
EventContentFields.MSC2716_HISTORICAL: True,
},
# Since the batch event is put at the end of the batch,
# where the newest-in-time event is, copy the origin_server_ts from
# the last event we're inserting
"origin_server_ts": last_event_in_batch["origin_server_ts"],
}
# Add the batch event to the end of the batch (newest-in-time)
events_to_create.append(batch_event)
# Add an "insertion" event to the start of each batch (next to the oldest-in-time
# event in the batch) so the next batch can be connected to this one.
insertion_event = self._create_insertion_event_dict(
sender=requester.user.to_string(),
# Create and persist all of the historical events as well as insertion
# and batch meta events to make the batch navigable in the DAG.
event_ids, next_batch_id = await self.room_batch_handler.handle_batch_of_events(
events_to_create=events_to_create,
room_id=room_id,
# Since the insertion event is put at the start of the batch,
# where the oldest-in-time event is, copy the origin_server_ts from
# the first event we're inserting
origin_server_ts=events_to_create[0]["origin_server_ts"],
batch_id_to_connect_to=batch_id_to_connect_to,
initial_prev_event_ids=prev_event_ids,
inherited_depth=inherited_depth,
auth_event_ids=auth_event_ids,
app_service_requester=requester,
)
# Prepend the insertion event to the start of the batch (oldest-in-time)
events_to_create = [insertion_event] + events_to_create
event_ids = []
events_to_persist = []
for ev in events_to_create:
assert_params_in_dict(ev, ["type", "origin_server_ts", "content", "sender"])
event_dict = {
"type": ev["type"],
"origin_server_ts": ev["origin_server_ts"],
"content": ev["content"],
"room_id": room_id,
"sender": ev["sender"], # requester.user.to_string(),
"prev_events": prev_event_ids.copy(),
}
# Mark all events as historical
event_dict["content"][EventContentFields.MSC2716_HISTORICAL] = True
event, context = await self.event_creation_handler.create_event(
await self._create_requester_for_user_id_from_app_service(
ev["sender"], requester.app_service
),
event_dict,
prev_event_ids=event_dict.get("prev_events"),
auth_event_ids=auth_event_ids,
historical=True,
depth=inherited_depth,
)
logger.debug(
"RoomBatchSendEventRestServlet inserting event=%s, prev_event_ids=%s, auth_event_ids=%s",
event,
prev_event_ids,
auth_event_ids,
)
assert self.hs.is_mine_id(event.sender), "User must be our own: %s" % (
event.sender,
)
events_to_persist.append((event, context))
event_id = event.event_id
event_ids.append(event_id)
prev_event_ids = [event_id]
# Persist events in reverse-chronological order so they have the
# correct stream_ordering as they are backfilled (which decrements).
# Events are sorted by (topological_ordering, stream_ordering)
# where topological_ordering is just depth.
for (event, context) in reversed(events_to_persist):
ev = await self.event_creation_handler.handle_new_client_event(
await self._create_requester_for_user_id_from_app_service(
event["sender"], requester.app_service
),
event=event,
context=context,
)
insertion_event_id = event_ids[0]
batch_event_id = event_ids[-1]
@ -447,9 +222,7 @@ class RoomBatchSendEventRestServlet(RestServlet):
response_dict = {
"state_event_ids": state_event_ids_at_start,
"event_ids": historical_event_ids,
"next_batch_id": insertion_event["content"][
EventContentFields.MSC2716_NEXT_BATCH_ID
],
"next_batch_id": next_batch_id,
"insertion_event_id": insertion_event_id,
"batch_event_id": batch_event_id,
}

View File

@ -97,6 +97,7 @@ from synapse.handlers.room import (
RoomCreationHandler,
RoomShutdownHandler,
)
from synapse.handlers.room_batch import RoomBatchHandler
from synapse.handlers.room_list import RoomListHandler
from synapse.handlers.room_member import RoomMemberHandler, RoomMemberMasterHandler
from synapse.handlers.room_member_worker import RoomMemberWorkerHandler
@ -437,6 +438,10 @@ class HomeServer(metaclass=abc.ABCMeta):
def get_room_creation_handler(self) -> RoomCreationHandler:
return RoomCreationHandler(self)
@cache_in_self
def get_room_batch_handler(self) -> RoomBatchHandler:
return RoomBatchHandler(self)
@cache_in_self
def get_room_shutdown_handler(self) -> RoomShutdownHandler:
return RoomShutdownHandler(self)