forked-synapse/synapse/util/iterutils.py

195 lines
5.4 KiB
Python
Raw Normal View History

2020-01-14 06:58:02 -05:00
#
2023-11-21 15:29:58 -05:00
# This file is licensed under the Affero General Public License (AGPL) version 3.
#
# Copyright 2020 The Matrix.org Foundation C.I.C.
# Copyright 2014-2016 OpenMarket Ltd
2023-11-21 15:29:58 -05:00
# Copyright (C) 2023 New Vector, Ltd
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# See the GNU Affero General Public License for more details:
# <https://www.gnu.org/licenses/agpl-3.0.html>.
#
# Originally licensed under the Apache License, Version 2.0:
# <http://www.apache.org/licenses/LICENSE-2.0>.
#
# [This file includes modifications made by New Vector Limited]
2020-01-14 06:58:02 -05:00
#
#
import heapq
2020-01-14 06:58:02 -05:00
from itertools import islice
from typing import (
Callable,
Collection,
Dict,
Generator,
Iterable,
Iterator,
List,
Mapping,
Set,
Sized,
Tuple,
TypeVar,
)
from typing_extensions import Protocol
2020-01-14 06:58:02 -05:00
T = TypeVar("T")
S = TypeVar("S", bound="_SelfSlice")
class _SelfSlice(Sized, Protocol):
"""A helper protocol that matches types where taking a slice results in the
same type being returned.
This is more specific than `Sequence`, which allows another `Sequence` to be
returned.
"""
def __getitem__(self: S, i: slice) -> S: ...
2020-01-14 06:58:02 -05:00
def batch_iter(iterable: Iterable[T], size: int) -> Iterator[Tuple[T, ...]]:
2020-01-14 06:58:02 -05:00
"""batch an iterable up into tuples with a maximum size
Args:
iterable: the iterable to slice
size: the maximum batch size
2020-01-14 06:58:02 -05:00
Returns:
an iterator over the chunks
"""
# make sure we can deal with iterables like lists too
sourceiter = iter(iterable)
# call islice until it returns an empty tuple
return iter(lambda: tuple(islice(sourceiter, size)), ())
def chunk_seq(iseq: S, maxlen: int) -> Iterator[S]:
"""Split the given sequence into chunks of the given size
The last chunk may be shorter than the given size.
If the input is empty, no chunks are returned.
"""
return (iseq[i : i + maxlen] for i in range(0, len(iseq), maxlen))
def partition(
iterable: Iterable[T], predicate: Callable[[T], bool]
) -> Tuple[List[T], List[T]]:
"""
Separate a given iterable into two lists based on the result of a predicate function.
Args:
iterable: the iterable to partition (separate)
predicate: a function that takes an item from the iterable and returns a boolean
Returns:
A tuple of two lists, the first containing all items for which the predicate
returned True, the second containing all items for which the predicate returned
False
"""
true_results = []
false_results = []
for item in iterable:
if predicate(item):
true_results.append(item)
else:
false_results.append(item)
return true_results, false_results
def sorted_topologically(
nodes: Iterable[T],
graph: Mapping[T, Collection[T]],
) -> Generator[T, None, None]:
"""Given a set of nodes and a graph, yield the nodes in toplogical order.
For example `sorted_topologically([1, 2], {1: [2]})` will yield `2, 1`.
"""
# This is implemented by Kahn's algorithm.
degree_map = {node: 0 for node in nodes}
reverse_graph: Dict[T, Set[T]] = {}
for node, edges in graph.items():
if node not in degree_map:
continue
for edge in set(edges):
if edge in degree_map:
degree_map[node] += 1
reverse_graph.setdefault(edge, set()).add(node)
reverse_graph.setdefault(node, set())
zero_degree = [node for node, degree in degree_map.items() if degree == 0]
heapq.heapify(zero_degree)
while zero_degree:
node = heapq.heappop(zero_degree)
yield node
for edge in reverse_graph.get(node, []):
if edge in degree_map:
degree_map[edge] -= 1
if degree_map[edge] == 0:
heapq.heappush(zero_degree, edge)
def sorted_topologically_batched(
nodes: Iterable[T],
graph: Mapping[T, Collection[T]],
) -> Generator[Collection[T], None, None]:
r"""Walk the graph topologically, returning batches of nodes where all nodes
that references it have been previously returned.
For example, given the following graph:
A
/ \
B C
\ /
D
This function will return: `[[A], [B, C], [D]]`.
This function is useful for e.g. batch persisting events in an auth chain,
where we can only persist an event if all its auth events have already been
persisted.
"""
degree_map = {node: 0 for node in nodes}
reverse_graph: Dict[T, Set[T]] = {}
for node, edges in graph.items():
if node not in degree_map:
continue
for edge in set(edges):
if edge in degree_map:
degree_map[node] += 1
reverse_graph.setdefault(edge, set()).add(node)
reverse_graph.setdefault(node, set())
zero_degree = [node for node, degree in degree_map.items() if degree == 0]
while zero_degree:
new_zero_degree = []
for node in zero_degree:
for edge in reverse_graph.get(node, []):
if edge in degree_map:
degree_map[edge] -= 1
if degree_map[edge] == 0:
new_zero_degree.append(edge)
yield zero_degree
zero_degree = new_zero_degree