mirror of
https://git.anonymousland.org/anonymousland/synapse.git
synced 2025-01-08 17:07:52 -05:00
b83e822556
The following scenarios would halt the user directory updater: - user joins room - user leaves room - user present in room which switches from private to public, or vice versa. for two classes of users: - appservice senders - users missing from the user table. If this happened, the user directory would be stuck, unable to make forward progress. Exclude both cases from the user directory, so that we ignore them. Co-authored-by: Eric Eastwood <erice@element.io> Co-authored-by: reivilibre <oliverw@matrix.org> Co-authored-by: Sean Quah <8349537+squahtx@users.noreply.github.com> Co-authored-by: Brendan Abolivier <babolivier@matrix.org>
611 lines
23 KiB
Python
611 lines
23 KiB
Python
# Copyright 2016 OpenMarket Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import logging
|
|
from typing import Dict, List, Optional, Tuple, Union
|
|
|
|
from synapse.metrics.background_process_metrics import wrap_as_background_process
|
|
from synapse.storage._base import SQLBaseStore
|
|
from synapse.storage.database import DatabasePool, make_tuple_comparison_clause
|
|
from synapse.types import UserID
|
|
from synapse.util.caches.lrucache import LruCache
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Number of msec of granularity to store the user IP 'last seen' time. Smaller
|
|
# times give more inserts into the database even for readonly API hits
|
|
# 120 seconds == 2 minutes
|
|
LAST_SEEN_GRANULARITY = 120 * 1000
|
|
|
|
|
|
class ClientIpBackgroundUpdateStore(SQLBaseStore):
|
|
def __init__(self, database: DatabasePool, db_conn, hs):
|
|
super().__init__(database, db_conn, hs)
|
|
|
|
self.db_pool.updates.register_background_index_update(
|
|
"user_ips_device_index",
|
|
index_name="user_ips_device_id",
|
|
table="user_ips",
|
|
columns=["user_id", "device_id", "last_seen"],
|
|
)
|
|
|
|
self.db_pool.updates.register_background_index_update(
|
|
"user_ips_last_seen_index",
|
|
index_name="user_ips_last_seen",
|
|
table="user_ips",
|
|
columns=["user_id", "last_seen"],
|
|
)
|
|
|
|
self.db_pool.updates.register_background_index_update(
|
|
"user_ips_last_seen_only_index",
|
|
index_name="user_ips_last_seen_only",
|
|
table="user_ips",
|
|
columns=["last_seen"],
|
|
)
|
|
|
|
self.db_pool.updates.register_background_update_handler(
|
|
"user_ips_analyze", self._analyze_user_ip
|
|
)
|
|
|
|
self.db_pool.updates.register_background_update_handler(
|
|
"user_ips_remove_dupes", self._remove_user_ip_dupes
|
|
)
|
|
|
|
# Register a unique index
|
|
self.db_pool.updates.register_background_index_update(
|
|
"user_ips_device_unique_index",
|
|
index_name="user_ips_user_token_ip_unique_index",
|
|
table="user_ips",
|
|
columns=["user_id", "access_token", "ip"],
|
|
unique=True,
|
|
)
|
|
|
|
# Drop the old non-unique index
|
|
self.db_pool.updates.register_background_update_handler(
|
|
"user_ips_drop_nonunique_index", self._remove_user_ip_nonunique
|
|
)
|
|
|
|
# Update the last seen info in devices.
|
|
self.db_pool.updates.register_background_update_handler(
|
|
"devices_last_seen", self._devices_last_seen_update
|
|
)
|
|
|
|
async def _remove_user_ip_nonunique(self, progress, batch_size):
|
|
def f(conn):
|
|
txn = conn.cursor()
|
|
txn.execute("DROP INDEX IF EXISTS user_ips_user_ip")
|
|
txn.close()
|
|
|
|
await self.db_pool.runWithConnection(f)
|
|
await self.db_pool.updates._end_background_update(
|
|
"user_ips_drop_nonunique_index"
|
|
)
|
|
return 1
|
|
|
|
async def _analyze_user_ip(self, progress, batch_size):
|
|
# Background update to analyze user_ips table before we run the
|
|
# deduplication background update. The table may not have been analyzed
|
|
# for ages due to the table locks.
|
|
#
|
|
# This will lock out the naive upserts to user_ips while it happens, but
|
|
# the analyze should be quick (28GB table takes ~10s)
|
|
def user_ips_analyze(txn):
|
|
txn.execute("ANALYZE user_ips")
|
|
|
|
await self.db_pool.runInteraction("user_ips_analyze", user_ips_analyze)
|
|
|
|
await self.db_pool.updates._end_background_update("user_ips_analyze")
|
|
|
|
return 1
|
|
|
|
async def _remove_user_ip_dupes(self, progress, batch_size):
|
|
# This works function works by scanning the user_ips table in batches
|
|
# based on `last_seen`. For each row in a batch it searches the rest of
|
|
# the table to see if there are any duplicates, if there are then they
|
|
# are removed and replaced with a suitable row.
|
|
|
|
# Fetch the start of the batch
|
|
begin_last_seen = progress.get("last_seen", 0)
|
|
|
|
def get_last_seen(txn):
|
|
txn.execute(
|
|
"""
|
|
SELECT last_seen FROM user_ips
|
|
WHERE last_seen > ?
|
|
ORDER BY last_seen
|
|
LIMIT 1
|
|
OFFSET ?
|
|
""",
|
|
(begin_last_seen, batch_size),
|
|
)
|
|
row = txn.fetchone()
|
|
if row:
|
|
return row[0]
|
|
else:
|
|
return None
|
|
|
|
# Get a last seen that has roughly `batch_size` since `begin_last_seen`
|
|
end_last_seen = await self.db_pool.runInteraction(
|
|
"user_ips_dups_get_last_seen", get_last_seen
|
|
)
|
|
|
|
# If it returns None, then we're processing the last batch
|
|
last = end_last_seen is None
|
|
|
|
logger.info(
|
|
"Scanning for duplicate 'user_ips' rows in range: %s <= last_seen < %s",
|
|
begin_last_seen,
|
|
end_last_seen,
|
|
)
|
|
|
|
def remove(txn):
|
|
# This works by looking at all entries in the given time span, and
|
|
# then for each (user_id, access_token, ip) tuple in that range
|
|
# checking for any duplicates in the rest of the table (via a join).
|
|
# It then only returns entries which have duplicates, and the max
|
|
# last_seen across all duplicates, which can the be used to delete
|
|
# all other duplicates.
|
|
# It is efficient due to the existence of (user_id, access_token,
|
|
# ip) and (last_seen) indices.
|
|
|
|
# Define the search space, which requires handling the last batch in
|
|
# a different way
|
|
if last:
|
|
clause = "? <= last_seen"
|
|
args = (begin_last_seen,)
|
|
else:
|
|
clause = "? <= last_seen AND last_seen < ?"
|
|
args = (begin_last_seen, end_last_seen)
|
|
|
|
# (Note: The DISTINCT in the inner query is important to ensure that
|
|
# the COUNT(*) is accurate, otherwise double counting may happen due
|
|
# to the join effectively being a cross product)
|
|
txn.execute(
|
|
"""
|
|
SELECT user_id, access_token, ip,
|
|
MAX(device_id), MAX(user_agent), MAX(last_seen),
|
|
COUNT(*)
|
|
FROM (
|
|
SELECT DISTINCT user_id, access_token, ip
|
|
FROM user_ips
|
|
WHERE {}
|
|
) c
|
|
INNER JOIN user_ips USING (user_id, access_token, ip)
|
|
GROUP BY user_id, access_token, ip
|
|
HAVING count(*) > 1
|
|
""".format(
|
|
clause
|
|
),
|
|
args,
|
|
)
|
|
res = txn.fetchall()
|
|
|
|
# We've got some duplicates
|
|
for i in res:
|
|
user_id, access_token, ip, device_id, user_agent, last_seen, count = i
|
|
|
|
# We want to delete the duplicates so we end up with only a
|
|
# single row.
|
|
#
|
|
# The naive way of doing this would be just to delete all rows
|
|
# and reinsert a constructed row. However, if there are a lot of
|
|
# duplicate rows this can cause the table to grow a lot, which
|
|
# can be problematic in two ways:
|
|
# 1. If user_ips is already large then this can cause the
|
|
# table to rapidly grow, potentially filling the disk.
|
|
# 2. Reinserting a lot of rows can confuse the table
|
|
# statistics for postgres, causing it to not use the
|
|
# correct indices for the query above, resulting in a full
|
|
# table scan. This is incredibly slow for large tables and
|
|
# can kill database performance. (This seems to mainly
|
|
# happen for the last query where the clause is simply `? <
|
|
# last_seen`)
|
|
#
|
|
# So instead we want to delete all but *one* of the duplicate
|
|
# rows. That is hard to do reliably, so we cheat and do a two
|
|
# step process:
|
|
# 1. Delete all rows with a last_seen strictly less than the
|
|
# max last_seen. This hopefully results in deleting all but
|
|
# one row the majority of the time, but there may be
|
|
# duplicate last_seen
|
|
# 2. If multiple rows remain, we fall back to the naive method
|
|
# and simply delete all rows and reinsert.
|
|
#
|
|
# Note that this relies on no new duplicate rows being inserted,
|
|
# but if that is happening then this entire process is futile
|
|
# anyway.
|
|
|
|
# Do step 1:
|
|
|
|
txn.execute(
|
|
"""
|
|
DELETE FROM user_ips
|
|
WHERE user_id = ? AND access_token = ? AND ip = ? AND last_seen < ?
|
|
""",
|
|
(user_id, access_token, ip, last_seen),
|
|
)
|
|
if txn.rowcount == count - 1:
|
|
# We deleted all but one of the duplicate rows, i.e. there
|
|
# is exactly one remaining and so there is nothing left to
|
|
# do.
|
|
continue
|
|
elif txn.rowcount >= count:
|
|
raise Exception(
|
|
"We deleted more duplicate rows from 'user_ips' than expected"
|
|
)
|
|
|
|
# The previous step didn't delete enough rows, so we fallback to
|
|
# step 2:
|
|
|
|
# Drop all the duplicates
|
|
txn.execute(
|
|
"""
|
|
DELETE FROM user_ips
|
|
WHERE user_id = ? AND access_token = ? AND ip = ?
|
|
""",
|
|
(user_id, access_token, ip),
|
|
)
|
|
|
|
# Add in one to be the last_seen
|
|
txn.execute(
|
|
"""
|
|
INSERT INTO user_ips
|
|
(user_id, access_token, ip, device_id, user_agent, last_seen)
|
|
VALUES (?, ?, ?, ?, ?, ?)
|
|
""",
|
|
(user_id, access_token, ip, device_id, user_agent, last_seen),
|
|
)
|
|
|
|
self.db_pool.updates._background_update_progress_txn(
|
|
txn, "user_ips_remove_dupes", {"last_seen": end_last_seen}
|
|
)
|
|
|
|
await self.db_pool.runInteraction("user_ips_dups_remove", remove)
|
|
|
|
if last:
|
|
await self.db_pool.updates._end_background_update("user_ips_remove_dupes")
|
|
|
|
return batch_size
|
|
|
|
async def _devices_last_seen_update(self, progress, batch_size):
|
|
"""Background update to insert last seen info into devices table"""
|
|
|
|
last_user_id = progress.get("last_user_id", "")
|
|
last_device_id = progress.get("last_device_id", "")
|
|
|
|
def _devices_last_seen_update_txn(txn):
|
|
# This consists of two queries:
|
|
#
|
|
# 1. The sub-query searches for the next N devices and joins
|
|
# against user_ips to find the max last_seen associated with
|
|
# that device.
|
|
# 2. The outer query then joins again against user_ips on
|
|
# user/device/last_seen. This *should* hopefully only
|
|
# return one row, but if it does return more than one then
|
|
# we'll just end up updating the same device row multiple
|
|
# times, which is fine.
|
|
|
|
where_clause, where_args = make_tuple_comparison_clause(
|
|
[("user_id", last_user_id), ("device_id", last_device_id)],
|
|
)
|
|
|
|
sql = """
|
|
SELECT
|
|
last_seen, ip, user_agent, user_id, device_id
|
|
FROM (
|
|
SELECT
|
|
user_id, device_id, MAX(u.last_seen) AS last_seen
|
|
FROM devices
|
|
INNER JOIN user_ips AS u USING (user_id, device_id)
|
|
WHERE %(where_clause)s
|
|
GROUP BY user_id, device_id
|
|
ORDER BY user_id ASC, device_id ASC
|
|
LIMIT ?
|
|
) c
|
|
INNER JOIN user_ips AS u USING (user_id, device_id, last_seen)
|
|
""" % {
|
|
"where_clause": where_clause
|
|
}
|
|
txn.execute(sql, where_args + [batch_size])
|
|
|
|
rows = txn.fetchall()
|
|
if not rows:
|
|
return 0
|
|
|
|
sql = """
|
|
UPDATE devices
|
|
SET last_seen = ?, ip = ?, user_agent = ?
|
|
WHERE user_id = ? AND device_id = ?
|
|
"""
|
|
txn.execute_batch(sql, rows)
|
|
|
|
_, _, _, user_id, device_id = rows[-1]
|
|
self.db_pool.updates._background_update_progress_txn(
|
|
txn,
|
|
"devices_last_seen",
|
|
{"last_user_id": user_id, "last_device_id": device_id},
|
|
)
|
|
|
|
return len(rows)
|
|
|
|
updated = await self.db_pool.runInteraction(
|
|
"_devices_last_seen_update", _devices_last_seen_update_txn
|
|
)
|
|
|
|
if not updated:
|
|
await self.db_pool.updates._end_background_update("devices_last_seen")
|
|
|
|
return updated
|
|
|
|
|
|
class ClientIpWorkerStore(ClientIpBackgroundUpdateStore):
|
|
def __init__(self, database: DatabasePool, db_conn, hs):
|
|
super().__init__(database, db_conn, hs)
|
|
|
|
self.user_ips_max_age = hs.config.server.user_ips_max_age
|
|
|
|
if hs.config.worker.run_background_tasks and self.user_ips_max_age:
|
|
self._clock.looping_call(self._prune_old_user_ips, 5 * 1000)
|
|
|
|
@wrap_as_background_process("prune_old_user_ips")
|
|
async def _prune_old_user_ips(self):
|
|
"""Removes entries in user IPs older than the configured period."""
|
|
|
|
if self.user_ips_max_age is None:
|
|
# Nothing to do
|
|
return
|
|
|
|
if not await self.db_pool.updates.has_completed_background_update(
|
|
"devices_last_seen"
|
|
):
|
|
# Only start pruning if we have finished populating the devices
|
|
# last seen info.
|
|
return
|
|
|
|
# We do a slightly funky SQL delete to ensure we don't try and delete
|
|
# too much at once (as the table may be very large from before we
|
|
# started pruning).
|
|
#
|
|
# This works by finding the max last_seen that is less than the given
|
|
# time, but has no more than N rows before it, deleting all rows with
|
|
# a lesser last_seen time. (We COALESCE so that the sub-SELECT always
|
|
# returns exactly one row).
|
|
sql = """
|
|
DELETE FROM user_ips
|
|
WHERE last_seen <= (
|
|
SELECT COALESCE(MAX(last_seen), -1)
|
|
FROM (
|
|
SELECT last_seen FROM user_ips
|
|
WHERE last_seen <= ?
|
|
ORDER BY last_seen ASC
|
|
LIMIT 5000
|
|
) AS u
|
|
)
|
|
"""
|
|
|
|
timestamp = self.clock.time_msec() - self.user_ips_max_age
|
|
|
|
def _prune_old_user_ips_txn(txn):
|
|
txn.execute(sql, (timestamp,))
|
|
|
|
await self.db_pool.runInteraction(
|
|
"_prune_old_user_ips", _prune_old_user_ips_txn
|
|
)
|
|
|
|
async def get_last_client_ip_by_device(
|
|
self, user_id: str, device_id: Optional[str]
|
|
) -> Dict[Tuple[str, str], dict]:
|
|
"""For each device_id listed, give the user_ip it was last seen on.
|
|
|
|
The result might be slightly out of date as client IPs are inserted in batches.
|
|
|
|
Args:
|
|
user_id: The user to fetch devices for.
|
|
device_id: If None fetches all devices for the user
|
|
|
|
Returns:
|
|
A dictionary mapping a tuple of (user_id, device_id) to dicts, with
|
|
keys giving the column names from the devices table.
|
|
"""
|
|
|
|
keyvalues = {"user_id": user_id}
|
|
if device_id is not None:
|
|
keyvalues["device_id"] = device_id
|
|
|
|
res = await self.db_pool.simple_select_list(
|
|
table="devices",
|
|
keyvalues=keyvalues,
|
|
retcols=("user_id", "ip", "user_agent", "device_id", "last_seen"),
|
|
)
|
|
|
|
return {(d["user_id"], d["device_id"]): d for d in res}
|
|
|
|
|
|
class ClientIpStore(ClientIpWorkerStore):
|
|
def __init__(self, database: DatabasePool, db_conn, hs):
|
|
|
|
self.client_ip_last_seen = LruCache(
|
|
cache_name="client_ip_last_seen", max_size=50000
|
|
)
|
|
|
|
super().__init__(database, db_conn, hs)
|
|
|
|
# (user_id, access_token, ip,) -> (user_agent, device_id, last_seen)
|
|
self._batch_row_update = {}
|
|
|
|
self._client_ip_looper = self._clock.looping_call(
|
|
self._update_client_ips_batch, 5 * 1000
|
|
)
|
|
self.hs.get_reactor().addSystemEventTrigger(
|
|
"before", "shutdown", self._update_client_ips_batch
|
|
)
|
|
|
|
async def insert_client_ip(
|
|
self, user_id, access_token, ip, user_agent, device_id, now=None
|
|
):
|
|
if not now:
|
|
now = int(self._clock.time_msec())
|
|
key = (user_id, access_token, ip)
|
|
|
|
try:
|
|
last_seen = self.client_ip_last_seen.get(key)
|
|
except KeyError:
|
|
last_seen = None
|
|
await self.populate_monthly_active_users(user_id)
|
|
# Rate-limited inserts
|
|
if last_seen is not None and (now - last_seen) < LAST_SEEN_GRANULARITY:
|
|
return
|
|
|
|
self.client_ip_last_seen.set(key, now)
|
|
|
|
self._batch_row_update[key] = (user_agent, device_id, now)
|
|
|
|
@wrap_as_background_process("update_client_ips")
|
|
async def _update_client_ips_batch(self) -> None:
|
|
|
|
# If the DB pool has already terminated, don't try updating
|
|
if not self.db_pool.is_running():
|
|
return
|
|
|
|
to_update = self._batch_row_update
|
|
self._batch_row_update = {}
|
|
|
|
await self.db_pool.runInteraction(
|
|
"_update_client_ips_batch", self._update_client_ips_batch_txn, to_update
|
|
)
|
|
|
|
def _update_client_ips_batch_txn(self, txn, to_update):
|
|
if "user_ips" in self.db_pool._unsafe_to_upsert_tables or (
|
|
not self.database_engine.can_native_upsert
|
|
):
|
|
self.database_engine.lock_table(txn, "user_ips")
|
|
|
|
for entry in to_update.items():
|
|
(user_id, access_token, ip), (user_agent, device_id, last_seen) = entry
|
|
|
|
self.db_pool.simple_upsert_txn(
|
|
txn,
|
|
table="user_ips",
|
|
keyvalues={"user_id": user_id, "access_token": access_token, "ip": ip},
|
|
values={
|
|
"user_agent": user_agent,
|
|
"device_id": device_id,
|
|
"last_seen": last_seen,
|
|
},
|
|
lock=False,
|
|
)
|
|
|
|
# Technically an access token might not be associated with
|
|
# a device so we need to check.
|
|
if device_id:
|
|
# this is always an update rather than an upsert: the row should
|
|
# already exist, and if it doesn't, that may be because it has been
|
|
# deleted, and we don't want to re-create it.
|
|
self.db_pool.simple_update_txn(
|
|
txn,
|
|
table="devices",
|
|
keyvalues={"user_id": user_id, "device_id": device_id},
|
|
updatevalues={
|
|
"user_agent": user_agent,
|
|
"last_seen": last_seen,
|
|
"ip": ip,
|
|
},
|
|
)
|
|
|
|
async def get_last_client_ip_by_device(
|
|
self, user_id: str, device_id: Optional[str]
|
|
) -> Dict[Tuple[str, str], dict]:
|
|
"""For each device_id listed, give the user_ip it was last seen on
|
|
|
|
Args:
|
|
user_id: The user to fetch devices for.
|
|
device_id: If None fetches all devices for the user
|
|
|
|
Returns:
|
|
A dictionary mapping a tuple of (user_id, device_id) to dicts, with
|
|
keys giving the column names from the devices table.
|
|
"""
|
|
ret = await super().get_last_client_ip_by_device(user_id, device_id)
|
|
|
|
# Update what is retrieved from the database with data which is pending
|
|
# insertion, as if it has already been stored in the database.
|
|
for key in self._batch_row_update:
|
|
uid, _access_token, ip = key
|
|
if uid == user_id:
|
|
user_agent, did, last_seen = self._batch_row_update[key]
|
|
|
|
if did is None:
|
|
# These updates don't make it to the `devices` table
|
|
continue
|
|
|
|
if not device_id or did == device_id:
|
|
ret[(user_id, did)] = {
|
|
"user_id": user_id,
|
|
"ip": ip,
|
|
"user_agent": user_agent,
|
|
"device_id": did,
|
|
"last_seen": last_seen,
|
|
}
|
|
return ret
|
|
|
|
async def get_user_ip_and_agents(
|
|
self, user: UserID, since_ts: int = 0
|
|
) -> List[Dict[str, Union[str, int]]]:
|
|
"""
|
|
Fetch IP/User Agent connection since a given timestamp.
|
|
"""
|
|
user_id = user.to_string()
|
|
results = {}
|
|
|
|
for key in self._batch_row_update:
|
|
(
|
|
uid,
|
|
access_token,
|
|
ip,
|
|
) = key
|
|
if uid == user_id:
|
|
user_agent, _, last_seen = self._batch_row_update[key]
|
|
if last_seen >= since_ts:
|
|
results[(access_token, ip)] = (user_agent, last_seen)
|
|
|
|
def get_recent(txn):
|
|
txn.execute(
|
|
"""
|
|
SELECT access_token, ip, user_agent, last_seen FROM user_ips
|
|
WHERE last_seen >= ? AND user_id = ?
|
|
ORDER BY last_seen
|
|
DESC
|
|
""",
|
|
(since_ts, user_id),
|
|
)
|
|
return txn.fetchall()
|
|
|
|
rows = await self.db_pool.runInteraction(
|
|
desc="get_user_ip_and_agents", func=get_recent
|
|
)
|
|
|
|
results.update(
|
|
((access_token, ip), (user_agent, last_seen))
|
|
for access_token, ip, user_agent, last_seen in rows
|
|
)
|
|
return [
|
|
{
|
|
"access_token": access_token,
|
|
"ip": ip,
|
|
"user_agent": user_agent,
|
|
"last_seen": last_seen,
|
|
}
|
|
for (access_token, ip), (user_agent, last_seen) in results.items()
|
|
]
|