mirror of
https://git.anonymousland.org/anonymousland/synapse.git
synced 2025-01-07 22:08:04 -05:00
294c675033
This is no longer required, since we have dropped support for Python 3.5.
1087 lines
41 KiB
Python
1087 lines
41 KiB
Python
# Copyright 2014-2016 OpenMarket Ltd
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
import itertools
|
||
import logging
|
||
from queue import Empty, PriorityQueue
|
||
from typing import Collection, Dict, Iterable, List, Set, Tuple
|
||
|
||
from synapse.api.errors import StoreError
|
||
from synapse.events import EventBase
|
||
from synapse.metrics.background_process_metrics import wrap_as_background_process
|
||
from synapse.storage._base import SQLBaseStore, make_in_list_sql_clause
|
||
from synapse.storage.database import DatabasePool, LoggingTransaction
|
||
from synapse.storage.databases.main.events_worker import EventsWorkerStore
|
||
from synapse.storage.databases.main.signatures import SignatureWorkerStore
|
||
from synapse.storage.engines import PostgresEngine
|
||
from synapse.storage.types import Cursor
|
||
from synapse.util.caches.descriptors import cached
|
||
from synapse.util.caches.lrucache import LruCache
|
||
from synapse.util.iterutils import batch_iter
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
|
||
class _NoChainCoverIndex(Exception):
|
||
def __init__(self, room_id: str):
|
||
super().__init__("Unexpectedly no chain cover for events in %s" % (room_id,))
|
||
|
||
|
||
class EventFederationWorkerStore(EventsWorkerStore, SignatureWorkerStore, SQLBaseStore):
|
||
def __init__(self, database: DatabasePool, db_conn, hs):
|
||
super().__init__(database, db_conn, hs)
|
||
|
||
if hs.config.run_background_tasks:
|
||
hs.get_clock().looping_call(
|
||
self._delete_old_forward_extrem_cache, 60 * 60 * 1000
|
||
)
|
||
|
||
# Cache of event ID to list of auth event IDs and their depths.
|
||
self._event_auth_cache = LruCache(
|
||
500000, "_event_auth_cache", size_callback=len
|
||
) # type: LruCache[str, List[Tuple[str, int]]]
|
||
|
||
async def get_auth_chain(
|
||
self, room_id: str, event_ids: Collection[str], include_given: bool = False
|
||
) -> List[EventBase]:
|
||
"""Get auth events for given event_ids. The events *must* be state events.
|
||
|
||
Args:
|
||
room_id: The room the event is in.
|
||
event_ids: state events
|
||
include_given: include the given events in result
|
||
|
||
Returns:
|
||
list of events
|
||
"""
|
||
event_ids = await self.get_auth_chain_ids(
|
||
room_id, event_ids, include_given=include_given
|
||
)
|
||
return await self.get_events_as_list(event_ids)
|
||
|
||
async def get_auth_chain_ids(
|
||
self,
|
||
room_id: str,
|
||
event_ids: Collection[str],
|
||
include_given: bool = False,
|
||
) -> List[str]:
|
||
"""Get auth events for given event_ids. The events *must* be state events.
|
||
|
||
Args:
|
||
room_id: The room the event is in.
|
||
event_ids: state events
|
||
include_given: include the given events in result
|
||
|
||
Returns:
|
||
list of event_ids
|
||
"""
|
||
|
||
# Check if we have indexed the room so we can use the chain cover
|
||
# algorithm.
|
||
room = await self.get_room(room_id)
|
||
if room["has_auth_chain_index"]:
|
||
try:
|
||
return await self.db_pool.runInteraction(
|
||
"get_auth_chain_ids_chains",
|
||
self._get_auth_chain_ids_using_cover_index_txn,
|
||
room_id,
|
||
event_ids,
|
||
include_given,
|
||
)
|
||
except _NoChainCoverIndex:
|
||
# For whatever reason we don't actually have a chain cover index
|
||
# for the events in question, so we fall back to the old method.
|
||
pass
|
||
|
||
return await self.db_pool.runInteraction(
|
||
"get_auth_chain_ids",
|
||
self._get_auth_chain_ids_txn,
|
||
event_ids,
|
||
include_given,
|
||
)
|
||
|
||
def _get_auth_chain_ids_using_cover_index_txn(
|
||
self, txn: Cursor, room_id: str, event_ids: Collection[str], include_given: bool
|
||
) -> List[str]:
|
||
"""Calculates the auth chain IDs using the chain index."""
|
||
|
||
# First we look up the chain ID/sequence numbers for the given events.
|
||
|
||
initial_events = set(event_ids)
|
||
|
||
# All the events that we've found that are reachable from the events.
|
||
seen_events = set() # type: Set[str]
|
||
|
||
# A map from chain ID to max sequence number of the given events.
|
||
event_chains = {} # type: Dict[int, int]
|
||
|
||
sql = """
|
||
SELECT event_id, chain_id, sequence_number
|
||
FROM event_auth_chains
|
||
WHERE %s
|
||
"""
|
||
for batch in batch_iter(initial_events, 1000):
|
||
clause, args = make_in_list_sql_clause(
|
||
txn.database_engine, "event_id", batch
|
||
)
|
||
txn.execute(sql % (clause,), args)
|
||
|
||
for event_id, chain_id, sequence_number in txn:
|
||
seen_events.add(event_id)
|
||
event_chains[chain_id] = max(
|
||
sequence_number, event_chains.get(chain_id, 0)
|
||
)
|
||
|
||
# Check that we actually have a chain ID for all the events.
|
||
events_missing_chain_info = initial_events.difference(seen_events)
|
||
if events_missing_chain_info:
|
||
# This can happen due to e.g. downgrade/upgrade of the server. We
|
||
# raise an exception and fall back to the previous algorithm.
|
||
logger.info(
|
||
"Unexpectedly found that events don't have chain IDs in room %s: %s",
|
||
room_id,
|
||
events_missing_chain_info,
|
||
)
|
||
raise _NoChainCoverIndex(room_id)
|
||
|
||
# Now we look up all links for the chains we have, adding chains that
|
||
# are reachable from any event.
|
||
sql = """
|
||
SELECT
|
||
origin_chain_id, origin_sequence_number,
|
||
target_chain_id, target_sequence_number
|
||
FROM event_auth_chain_links
|
||
WHERE %s
|
||
"""
|
||
|
||
# A map from chain ID to max sequence number *reachable* from any event ID.
|
||
chains = {} # type: Dict[int, int]
|
||
|
||
# Add all linked chains reachable from initial set of chains.
|
||
for batch in batch_iter(event_chains, 1000):
|
||
clause, args = make_in_list_sql_clause(
|
||
txn.database_engine, "origin_chain_id", batch
|
||
)
|
||
txn.execute(sql % (clause,), args)
|
||
|
||
for (
|
||
origin_chain_id,
|
||
origin_sequence_number,
|
||
target_chain_id,
|
||
target_sequence_number,
|
||
) in txn:
|
||
# chains are only reachable if the origin sequence number of
|
||
# the link is less than the max sequence number in the
|
||
# origin chain.
|
||
if origin_sequence_number <= event_chains.get(origin_chain_id, 0):
|
||
chains[target_chain_id] = max(
|
||
target_sequence_number,
|
||
chains.get(target_chain_id, 0),
|
||
)
|
||
|
||
# Add the initial set of chains, excluding the sequence corresponding to
|
||
# initial event.
|
||
for chain_id, seq_no in event_chains.items():
|
||
chains[chain_id] = max(seq_no - 1, chains.get(chain_id, 0))
|
||
|
||
# Now for each chain we figure out the maximum sequence number reachable
|
||
# from *any* event ID. Events with a sequence less than that are in the
|
||
# auth chain.
|
||
if include_given:
|
||
results = initial_events
|
||
else:
|
||
results = set()
|
||
|
||
if isinstance(self.database_engine, PostgresEngine):
|
||
# We can use `execute_values` to efficiently fetch the gaps when
|
||
# using postgres.
|
||
sql = """
|
||
SELECT event_id
|
||
FROM event_auth_chains AS c, (VALUES ?) AS l(chain_id, max_seq)
|
||
WHERE
|
||
c.chain_id = l.chain_id
|
||
AND sequence_number <= max_seq
|
||
"""
|
||
|
||
rows = txn.execute_values(sql, chains.items())
|
||
results.update(r for r, in rows)
|
||
else:
|
||
# For SQLite we just fall back to doing a noddy for loop.
|
||
sql = """
|
||
SELECT event_id FROM event_auth_chains
|
||
WHERE chain_id = ? AND sequence_number <= ?
|
||
"""
|
||
for chain_id, max_no in chains.items():
|
||
txn.execute(sql, (chain_id, max_no))
|
||
results.update(r for r, in txn)
|
||
|
||
return list(results)
|
||
|
||
def _get_auth_chain_ids_txn(
|
||
self, txn: LoggingTransaction, event_ids: Collection[str], include_given: bool
|
||
) -> List[str]:
|
||
"""Calculates the auth chain IDs.
|
||
|
||
This is used when we don't have a cover index for the room.
|
||
"""
|
||
if include_given:
|
||
results = set(event_ids)
|
||
else:
|
||
results = set()
|
||
|
||
# We pull out the depth simply so that we can populate the
|
||
# `_event_auth_cache` cache.
|
||
base_sql = """
|
||
SELECT a.event_id, auth_id, depth
|
||
FROM event_auth AS a
|
||
INNER JOIN events AS e ON (e.event_id = a.auth_id)
|
||
WHERE
|
||
"""
|
||
|
||
front = set(event_ids)
|
||
while front:
|
||
new_front = set()
|
||
for chunk in batch_iter(front, 100):
|
||
# Pull the auth events either from the cache or DB.
|
||
to_fetch = [] # Event IDs to fetch from DB # type: List[str]
|
||
for event_id in chunk:
|
||
res = self._event_auth_cache.get(event_id)
|
||
if res is None:
|
||
to_fetch.append(event_id)
|
||
else:
|
||
new_front.update(auth_id for auth_id, depth in res)
|
||
|
||
if to_fetch:
|
||
clause, args = make_in_list_sql_clause(
|
||
txn.database_engine, "a.event_id", to_fetch
|
||
)
|
||
txn.execute(base_sql + clause, args)
|
||
|
||
# Note we need to batch up the results by event ID before
|
||
# adding to the cache.
|
||
to_cache = {}
|
||
for event_id, auth_event_id, auth_event_depth in txn:
|
||
to_cache.setdefault(event_id, []).append(
|
||
(auth_event_id, auth_event_depth)
|
||
)
|
||
new_front.add(auth_event_id)
|
||
|
||
for event_id, auth_events in to_cache.items():
|
||
self._event_auth_cache.set(event_id, auth_events)
|
||
|
||
new_front -= results
|
||
|
||
front = new_front
|
||
results.update(front)
|
||
|
||
return list(results)
|
||
|
||
async def get_auth_chain_difference(
|
||
self, room_id: str, state_sets: List[Set[str]]
|
||
) -> Set[str]:
|
||
"""Given sets of state events figure out the auth chain difference (as
|
||
per state res v2 algorithm).
|
||
|
||
This equivalent to fetching the full auth chain for each set of state
|
||
and returning the events that don't appear in each and every auth
|
||
chain.
|
||
|
||
Returns:
|
||
The set of the difference in auth chains.
|
||
"""
|
||
|
||
# Check if we have indexed the room so we can use the chain cover
|
||
# algorithm.
|
||
room = await self.get_room(room_id)
|
||
if room["has_auth_chain_index"]:
|
||
try:
|
||
return await self.db_pool.runInteraction(
|
||
"get_auth_chain_difference_chains",
|
||
self._get_auth_chain_difference_using_cover_index_txn,
|
||
room_id,
|
||
state_sets,
|
||
)
|
||
except _NoChainCoverIndex:
|
||
# For whatever reason we don't actually have a chain cover index
|
||
# for the events in question, so we fall back to the old method.
|
||
pass
|
||
|
||
return await self.db_pool.runInteraction(
|
||
"get_auth_chain_difference",
|
||
self._get_auth_chain_difference_txn,
|
||
state_sets,
|
||
)
|
||
|
||
def _get_auth_chain_difference_using_cover_index_txn(
|
||
self, txn: Cursor, room_id: str, state_sets: List[Set[str]]
|
||
) -> Set[str]:
|
||
"""Calculates the auth chain difference using the chain index.
|
||
|
||
See docs/auth_chain_difference_algorithm.md for details
|
||
"""
|
||
|
||
# First we look up the chain ID/sequence numbers for all the events, and
|
||
# work out the chain/sequence numbers reachable from each state set.
|
||
|
||
initial_events = set(state_sets[0]).union(*state_sets[1:])
|
||
|
||
# Map from event_id -> (chain ID, seq no)
|
||
chain_info = {} # type: Dict[str, Tuple[int, int]]
|
||
|
||
# Map from chain ID -> seq no -> event Id
|
||
chain_to_event = {} # type: Dict[int, Dict[int, str]]
|
||
|
||
# All the chains that we've found that are reachable from the state
|
||
# sets.
|
||
seen_chains = set() # type: Set[int]
|
||
|
||
sql = """
|
||
SELECT event_id, chain_id, sequence_number
|
||
FROM event_auth_chains
|
||
WHERE %s
|
||
"""
|
||
for batch in batch_iter(initial_events, 1000):
|
||
clause, args = make_in_list_sql_clause(
|
||
txn.database_engine, "event_id", batch
|
||
)
|
||
txn.execute(sql % (clause,), args)
|
||
|
||
for event_id, chain_id, sequence_number in txn:
|
||
chain_info[event_id] = (chain_id, sequence_number)
|
||
seen_chains.add(chain_id)
|
||
chain_to_event.setdefault(chain_id, {})[sequence_number] = event_id
|
||
|
||
# Check that we actually have a chain ID for all the events.
|
||
events_missing_chain_info = initial_events.difference(chain_info)
|
||
if events_missing_chain_info:
|
||
# This can happen due to e.g. downgrade/upgrade of the server. We
|
||
# raise an exception and fall back to the previous algorithm.
|
||
logger.info(
|
||
"Unexpectedly found that events don't have chain IDs in room %s: %s",
|
||
room_id,
|
||
events_missing_chain_info,
|
||
)
|
||
raise _NoChainCoverIndex(room_id)
|
||
|
||
# Corresponds to `state_sets`, except as a map from chain ID to max
|
||
# sequence number reachable from the state set.
|
||
set_to_chain = [] # type: List[Dict[int, int]]
|
||
for state_set in state_sets:
|
||
chains = {} # type: Dict[int, int]
|
||
set_to_chain.append(chains)
|
||
|
||
for event_id in state_set:
|
||
chain_id, seq_no = chain_info[event_id]
|
||
|
||
chains[chain_id] = max(seq_no, chains.get(chain_id, 0))
|
||
|
||
# Now we look up all links for the chains we have, adding chains to
|
||
# set_to_chain that are reachable from each set.
|
||
sql = """
|
||
SELECT
|
||
origin_chain_id, origin_sequence_number,
|
||
target_chain_id, target_sequence_number
|
||
FROM event_auth_chain_links
|
||
WHERE %s
|
||
"""
|
||
|
||
# (We need to take a copy of `seen_chains` as we want to mutate it in
|
||
# the loop)
|
||
for batch in batch_iter(set(seen_chains), 1000):
|
||
clause, args = make_in_list_sql_clause(
|
||
txn.database_engine, "origin_chain_id", batch
|
||
)
|
||
txn.execute(sql % (clause,), args)
|
||
|
||
for (
|
||
origin_chain_id,
|
||
origin_sequence_number,
|
||
target_chain_id,
|
||
target_sequence_number,
|
||
) in txn:
|
||
for chains in set_to_chain:
|
||
# chains are only reachable if the origin sequence number of
|
||
# the link is less than the max sequence number in the
|
||
# origin chain.
|
||
if origin_sequence_number <= chains.get(origin_chain_id, 0):
|
||
chains[target_chain_id] = max(
|
||
target_sequence_number,
|
||
chains.get(target_chain_id, 0),
|
||
)
|
||
|
||
seen_chains.add(target_chain_id)
|
||
|
||
# Now for each chain we figure out the maximum sequence number reachable
|
||
# from *any* state set and the minimum sequence number reachable from
|
||
# *all* state sets. Events in that range are in the auth chain
|
||
# difference.
|
||
result = set()
|
||
|
||
# Mapping from chain ID to the range of sequence numbers that should be
|
||
# pulled from the database.
|
||
chain_to_gap = {} # type: Dict[int, Tuple[int, int]]
|
||
|
||
for chain_id in seen_chains:
|
||
min_seq_no = min(chains.get(chain_id, 0) for chains in set_to_chain)
|
||
max_seq_no = max(chains.get(chain_id, 0) for chains in set_to_chain)
|
||
|
||
if min_seq_no < max_seq_no:
|
||
# We have a non empty gap, try and fill it from the events that
|
||
# we have, otherwise add them to the list of gaps to pull out
|
||
# from the DB.
|
||
for seq_no in range(min_seq_no + 1, max_seq_no + 1):
|
||
event_id = chain_to_event.get(chain_id, {}).get(seq_no)
|
||
if event_id:
|
||
result.add(event_id)
|
||
else:
|
||
chain_to_gap[chain_id] = (min_seq_no, max_seq_no)
|
||
break
|
||
|
||
if not chain_to_gap:
|
||
# If there are no gaps to fetch, we're done!
|
||
return result
|
||
|
||
if isinstance(self.database_engine, PostgresEngine):
|
||
# We can use `execute_values` to efficiently fetch the gaps when
|
||
# using postgres.
|
||
sql = """
|
||
SELECT event_id
|
||
FROM event_auth_chains AS c, (VALUES ?) AS l(chain_id, min_seq, max_seq)
|
||
WHERE
|
||
c.chain_id = l.chain_id
|
||
AND min_seq < sequence_number AND sequence_number <= max_seq
|
||
"""
|
||
|
||
args = [
|
||
(chain_id, min_no, max_no)
|
||
for chain_id, (min_no, max_no) in chain_to_gap.items()
|
||
]
|
||
|
||
rows = txn.execute_values(sql, args)
|
||
result.update(r for r, in rows)
|
||
else:
|
||
# For SQLite we just fall back to doing a noddy for loop.
|
||
sql = """
|
||
SELECT event_id FROM event_auth_chains
|
||
WHERE chain_id = ? AND ? < sequence_number AND sequence_number <= ?
|
||
"""
|
||
for chain_id, (min_no, max_no) in chain_to_gap.items():
|
||
txn.execute(sql, (chain_id, min_no, max_no))
|
||
result.update(r for r, in txn)
|
||
|
||
return result
|
||
|
||
def _get_auth_chain_difference_txn(
|
||
self, txn, state_sets: List[Set[str]]
|
||
) -> Set[str]:
|
||
"""Calculates the auth chain difference using a breadth first search.
|
||
|
||
This is used when we don't have a cover index for the room.
|
||
"""
|
||
|
||
# Algorithm Description
|
||
# ~~~~~~~~~~~~~~~~~~~~~
|
||
#
|
||
# The idea here is to basically walk the auth graph of each state set in
|
||
# tandem, keeping track of which auth events are reachable by each state
|
||
# set. If we reach an auth event we've already visited (via a different
|
||
# state set) then we mark that auth event and all ancestors as reachable
|
||
# by the state set. This requires that we keep track of the auth chains
|
||
# in memory.
|
||
#
|
||
# Doing it in a such a way means that we can stop early if all auth
|
||
# events we're currently walking are reachable by all state sets.
|
||
#
|
||
# *Note*: We can't stop walking an event's auth chain if it is reachable
|
||
# by all state sets. This is because other auth chains we're walking
|
||
# might be reachable only via the original auth chain. For example,
|
||
# given the following auth chain:
|
||
#
|
||
# A -> C -> D -> E
|
||
# / /
|
||
# B -´---------´
|
||
#
|
||
# and state sets {A} and {B} then walking the auth chains of A and B
|
||
# would immediately show that C is reachable by both. However, if we
|
||
# stopped at C then we'd only reach E via the auth chain of B and so E
|
||
# would erroneously get included in the returned difference.
|
||
#
|
||
# The other thing that we do is limit the number of auth chains we walk
|
||
# at once, due to practical limits (i.e. we can only query the database
|
||
# with a limited set of parameters). We pick the auth chains we walk
|
||
# each iteration based on their depth, in the hope that events with a
|
||
# lower depth are likely reachable by those with higher depths.
|
||
#
|
||
# We could use any ordering that we believe would give a rough
|
||
# topological ordering, e.g. origin server timestamp. If the ordering
|
||
# chosen is not topological then the algorithm still produces the right
|
||
# result, but perhaps a bit more inefficiently. This is why it is safe
|
||
# to use "depth" here.
|
||
|
||
initial_events = set(state_sets[0]).union(*state_sets[1:])
|
||
|
||
# Dict from events in auth chains to which sets *cannot* reach them.
|
||
# I.e. if the set is empty then all sets can reach the event.
|
||
event_to_missing_sets = {
|
||
event_id: {i for i, a in enumerate(state_sets) if event_id not in a}
|
||
for event_id in initial_events
|
||
}
|
||
|
||
# The sorted list of events whose auth chains we should walk.
|
||
search = [] # type: List[Tuple[int, str]]
|
||
|
||
# We need to get the depth of the initial events for sorting purposes.
|
||
sql = """
|
||
SELECT depth, event_id FROM events
|
||
WHERE %s
|
||
"""
|
||
# the list can be huge, so let's avoid looking them all up in one massive
|
||
# query.
|
||
for batch in batch_iter(initial_events, 1000):
|
||
clause, args = make_in_list_sql_clause(
|
||
txn.database_engine, "event_id", batch
|
||
)
|
||
txn.execute(sql % (clause,), args)
|
||
|
||
# I think building a temporary list with fetchall is more efficient than
|
||
# just `search.extend(txn)`, but this is unconfirmed
|
||
search.extend(txn.fetchall())
|
||
|
||
# sort by depth
|
||
search.sort()
|
||
|
||
# Map from event to its auth events
|
||
event_to_auth_events = {} # type: Dict[str, Set[str]]
|
||
|
||
base_sql = """
|
||
SELECT a.event_id, auth_id, depth
|
||
FROM event_auth AS a
|
||
INNER JOIN events AS e ON (e.event_id = a.auth_id)
|
||
WHERE
|
||
"""
|
||
|
||
while search:
|
||
# Check whether all our current walks are reachable by all state
|
||
# sets. If so we can bail.
|
||
if all(not event_to_missing_sets[eid] for _, eid in search):
|
||
break
|
||
|
||
# Fetch the auth events and their depths of the N last events we're
|
||
# currently walking, either from cache or DB.
|
||
search, chunk = search[:-100], search[-100:]
|
||
|
||
found = [] # Results found # type: List[Tuple[str, str, int]]
|
||
to_fetch = [] # Event IDs to fetch from DB # type: List[str]
|
||
for _, event_id in chunk:
|
||
res = self._event_auth_cache.get(event_id)
|
||
if res is None:
|
||
to_fetch.append(event_id)
|
||
else:
|
||
found.extend((event_id, auth_id, depth) for auth_id, depth in res)
|
||
|
||
if to_fetch:
|
||
clause, args = make_in_list_sql_clause(
|
||
txn.database_engine, "a.event_id", to_fetch
|
||
)
|
||
txn.execute(base_sql + clause, args)
|
||
|
||
# We parse the results and add the to the `found` set and the
|
||
# cache (note we need to batch up the results by event ID before
|
||
# adding to the cache).
|
||
to_cache = {}
|
||
for event_id, auth_event_id, auth_event_depth in txn:
|
||
to_cache.setdefault(event_id, []).append(
|
||
(auth_event_id, auth_event_depth)
|
||
)
|
||
found.append((event_id, auth_event_id, auth_event_depth))
|
||
|
||
for event_id, auth_events in to_cache.items():
|
||
self._event_auth_cache.set(event_id, auth_events)
|
||
|
||
for event_id, auth_event_id, auth_event_depth in found:
|
||
event_to_auth_events.setdefault(event_id, set()).add(auth_event_id)
|
||
|
||
sets = event_to_missing_sets.get(auth_event_id)
|
||
if sets is None:
|
||
# First time we're seeing this event, so we add it to the
|
||
# queue of things to fetch.
|
||
search.append((auth_event_depth, auth_event_id))
|
||
|
||
# Assume that this event is unreachable from any of the
|
||
# state sets until proven otherwise
|
||
sets = event_to_missing_sets[auth_event_id] = set(
|
||
range(len(state_sets))
|
||
)
|
||
else:
|
||
# We've previously seen this event, so look up its auth
|
||
# events and recursively mark all ancestors as reachable
|
||
# by the current event's state set.
|
||
a_ids = event_to_auth_events.get(auth_event_id)
|
||
while a_ids:
|
||
new_aids = set()
|
||
for a_id in a_ids:
|
||
event_to_missing_sets[a_id].intersection_update(
|
||
event_to_missing_sets[event_id]
|
||
)
|
||
|
||
b = event_to_auth_events.get(a_id)
|
||
if b:
|
||
new_aids.update(b)
|
||
|
||
a_ids = new_aids
|
||
|
||
# Mark that the auth event is reachable by the appropriate sets.
|
||
sets.intersection_update(event_to_missing_sets[event_id])
|
||
|
||
search.sort()
|
||
|
||
# Return all events where not all sets can reach them.
|
||
return {eid for eid, n in event_to_missing_sets.items() if n}
|
||
|
||
async def get_oldest_events_with_depth_in_room(self, room_id):
|
||
return await self.db_pool.runInteraction(
|
||
"get_oldest_events_with_depth_in_room",
|
||
self.get_oldest_events_with_depth_in_room_txn,
|
||
room_id,
|
||
)
|
||
|
||
def get_oldest_events_with_depth_in_room_txn(self, txn, room_id):
|
||
sql = (
|
||
"SELECT b.event_id, MAX(e.depth) FROM events as e"
|
||
" INNER JOIN event_edges as g"
|
||
" ON g.event_id = e.event_id"
|
||
" INNER JOIN event_backward_extremities as b"
|
||
" ON g.prev_event_id = b.event_id"
|
||
" WHERE b.room_id = ? AND g.is_state is ?"
|
||
" GROUP BY b.event_id"
|
||
)
|
||
|
||
txn.execute(sql, (room_id, False))
|
||
|
||
return dict(txn)
|
||
|
||
async def get_max_depth_of(self, event_ids: List[str]) -> int:
|
||
"""Returns the max depth of a set of event IDs
|
||
|
||
Args:
|
||
event_ids: The event IDs to calculate the max depth of.
|
||
"""
|
||
rows = await self.db_pool.simple_select_many_batch(
|
||
table="events",
|
||
column="event_id",
|
||
iterable=event_ids,
|
||
retcols=("depth",),
|
||
desc="get_max_depth_of",
|
||
)
|
||
|
||
if not rows:
|
||
return 0
|
||
else:
|
||
return max(row["depth"] for row in rows)
|
||
|
||
async def get_prev_events_for_room(self, room_id: str) -> List[str]:
|
||
"""
|
||
Gets a subset of the current forward extremities in the given room.
|
||
|
||
Limits the result to 10 extremities, so that we can avoid creating
|
||
events which refer to hundreds of prev_events.
|
||
|
||
Args:
|
||
room_id: room_id
|
||
|
||
Returns:
|
||
The event ids of the forward extremities.
|
||
|
||
"""
|
||
|
||
return await self.db_pool.runInteraction(
|
||
"get_prev_events_for_room", self._get_prev_events_for_room_txn, room_id
|
||
)
|
||
|
||
def _get_prev_events_for_room_txn(self, txn, room_id: str):
|
||
# we just use the 10 newest events. Older events will become
|
||
# prev_events of future events.
|
||
|
||
sql = """
|
||
SELECT e.event_id FROM event_forward_extremities AS f
|
||
INNER JOIN events AS e USING (event_id)
|
||
WHERE f.room_id = ?
|
||
ORDER BY e.depth DESC
|
||
LIMIT 10
|
||
"""
|
||
|
||
txn.execute(sql, (room_id,))
|
||
|
||
return [row[0] for row in txn]
|
||
|
||
async def get_rooms_with_many_extremities(
|
||
self, min_count: int, limit: int, room_id_filter: Iterable[str]
|
||
) -> List[str]:
|
||
"""Get the top rooms with at least N extremities.
|
||
|
||
Args:
|
||
min_count: The minimum number of extremities
|
||
limit: The maximum number of rooms to return.
|
||
room_id_filter: room_ids to exclude from the results
|
||
|
||
Returns:
|
||
At most `limit` room IDs that have at least `min_count` extremities,
|
||
sorted by extremity count.
|
||
"""
|
||
|
||
def _get_rooms_with_many_extremities_txn(txn):
|
||
where_clause = "1=1"
|
||
if room_id_filter:
|
||
where_clause = "room_id NOT IN (%s)" % (
|
||
",".join("?" for _ in room_id_filter),
|
||
)
|
||
|
||
sql = """
|
||
SELECT room_id FROM event_forward_extremities
|
||
WHERE %s
|
||
GROUP BY room_id
|
||
HAVING count(*) > ?
|
||
ORDER BY count(*) DESC
|
||
LIMIT ?
|
||
""" % (
|
||
where_clause,
|
||
)
|
||
|
||
query_args = list(itertools.chain(room_id_filter, [min_count, limit]))
|
||
txn.execute(sql, query_args)
|
||
return [room_id for room_id, in txn]
|
||
|
||
return await self.db_pool.runInteraction(
|
||
"get_rooms_with_many_extremities", _get_rooms_with_many_extremities_txn
|
||
)
|
||
|
||
@cached(max_entries=5000, iterable=True)
|
||
async def get_latest_event_ids_in_room(self, room_id: str) -> List[str]:
|
||
return await self.db_pool.simple_select_onecol(
|
||
table="event_forward_extremities",
|
||
keyvalues={"room_id": room_id},
|
||
retcol="event_id",
|
||
desc="get_latest_event_ids_in_room",
|
||
)
|
||
|
||
async def get_min_depth(self, room_id: str) -> int:
|
||
"""For the given room, get the minimum depth we have seen for it."""
|
||
return await self.db_pool.runInteraction(
|
||
"get_min_depth", self._get_min_depth_interaction, room_id
|
||
)
|
||
|
||
def _get_min_depth_interaction(self, txn, room_id):
|
||
min_depth = self.db_pool.simple_select_one_onecol_txn(
|
||
txn,
|
||
table="room_depth",
|
||
keyvalues={"room_id": room_id},
|
||
retcol="min_depth",
|
||
allow_none=True,
|
||
)
|
||
|
||
return int(min_depth) if min_depth is not None else None
|
||
|
||
async def get_forward_extremities_for_room_at_stream_ordering(
|
||
self, room_id: str, stream_ordering: int
|
||
) -> List[str]:
|
||
"""For a given room_id and stream_ordering, return the forward
|
||
extremeties of the room at that point in "time".
|
||
|
||
Throws a StoreError if we have since purged the index for
|
||
stream_orderings from that point.
|
||
|
||
Args:
|
||
room_id:
|
||
stream_ordering:
|
||
|
||
Returns:
|
||
A list of event_ids
|
||
"""
|
||
# We want to make the cache more effective, so we clamp to the last
|
||
# change before the given ordering.
|
||
last_change = self._events_stream_cache.get_max_pos_of_last_change(room_id)
|
||
|
||
# We don't always have a full stream_to_exterm_id table, e.g. after
|
||
# the upgrade that introduced it, so we make sure we never ask for a
|
||
# stream_ordering from before a restart
|
||
last_change = max(self._stream_order_on_start, last_change)
|
||
|
||
# provided the last_change is recent enough, we now clamp the requested
|
||
# stream_ordering to it.
|
||
if last_change > self.stream_ordering_month_ago:
|
||
stream_ordering = min(last_change, stream_ordering)
|
||
|
||
return await self._get_forward_extremeties_for_room(room_id, stream_ordering)
|
||
|
||
@cached(max_entries=5000, num_args=2)
|
||
async def _get_forward_extremeties_for_room(self, room_id, stream_ordering):
|
||
"""For a given room_id and stream_ordering, return the forward
|
||
extremeties of the room at that point in "time".
|
||
|
||
Throws a StoreError if we have since purged the index for
|
||
stream_orderings from that point.
|
||
"""
|
||
|
||
if stream_ordering <= self.stream_ordering_month_ago:
|
||
raise StoreError(400, "stream_ordering too old %s" % (stream_ordering,))
|
||
|
||
sql = """
|
||
SELECT event_id FROM stream_ordering_to_exterm
|
||
INNER JOIN (
|
||
SELECT room_id, MAX(stream_ordering) AS stream_ordering
|
||
FROM stream_ordering_to_exterm
|
||
WHERE stream_ordering <= ? GROUP BY room_id
|
||
) AS rms USING (room_id, stream_ordering)
|
||
WHERE room_id = ?
|
||
"""
|
||
|
||
def get_forward_extremeties_for_room_txn(txn):
|
||
txn.execute(sql, (stream_ordering, room_id))
|
||
return [event_id for event_id, in txn]
|
||
|
||
return await self.db_pool.runInteraction(
|
||
"get_forward_extremeties_for_room", get_forward_extremeties_for_room_txn
|
||
)
|
||
|
||
async def get_backfill_events(self, room_id: str, event_list: list, limit: int):
|
||
"""Get a list of Events for a given topic that occurred before (and
|
||
including) the events in event_list. Return a list of max size `limit`
|
||
|
||
Args:
|
||
room_id
|
||
event_list
|
||
limit
|
||
"""
|
||
event_ids = await self.db_pool.runInteraction(
|
||
"get_backfill_events",
|
||
self._get_backfill_events,
|
||
room_id,
|
||
event_list,
|
||
limit,
|
||
)
|
||
events = await self.get_events_as_list(event_ids)
|
||
return sorted(events, key=lambda e: -e.depth)
|
||
|
||
def _get_backfill_events(self, txn, room_id, event_list, limit):
|
||
logger.debug("_get_backfill_events: %s, %r, %s", room_id, event_list, limit)
|
||
|
||
event_results = set()
|
||
|
||
# We want to make sure that we do a breadth-first, "depth" ordered
|
||
# search.
|
||
|
||
query = (
|
||
"SELECT depth, prev_event_id FROM event_edges"
|
||
" INNER JOIN events"
|
||
" ON prev_event_id = events.event_id"
|
||
" WHERE event_edges.event_id = ?"
|
||
" AND event_edges.is_state = ?"
|
||
" LIMIT ?"
|
||
)
|
||
|
||
queue = PriorityQueue()
|
||
|
||
for event_id in event_list:
|
||
depth = self.db_pool.simple_select_one_onecol_txn(
|
||
txn,
|
||
table="events",
|
||
keyvalues={"event_id": event_id, "room_id": room_id},
|
||
retcol="depth",
|
||
allow_none=True,
|
||
)
|
||
|
||
if depth:
|
||
queue.put((-depth, event_id))
|
||
|
||
while not queue.empty() and len(event_results) < limit:
|
||
try:
|
||
_, event_id = queue.get_nowait()
|
||
except Empty:
|
||
break
|
||
|
||
if event_id in event_results:
|
||
continue
|
||
|
||
event_results.add(event_id)
|
||
|
||
txn.execute(query, (event_id, False, limit - len(event_results)))
|
||
|
||
for row in txn:
|
||
if row[1] not in event_results:
|
||
queue.put((-row[0], row[1]))
|
||
|
||
return event_results
|
||
|
||
async def get_missing_events(self, room_id, earliest_events, latest_events, limit):
|
||
ids = await self.db_pool.runInteraction(
|
||
"get_missing_events",
|
||
self._get_missing_events,
|
||
room_id,
|
||
earliest_events,
|
||
latest_events,
|
||
limit,
|
||
)
|
||
return await self.get_events_as_list(ids)
|
||
|
||
def _get_missing_events(self, txn, room_id, earliest_events, latest_events, limit):
|
||
|
||
seen_events = set(earliest_events)
|
||
front = set(latest_events) - seen_events
|
||
event_results = []
|
||
|
||
query = (
|
||
"SELECT prev_event_id FROM event_edges "
|
||
"WHERE room_id = ? AND event_id = ? AND is_state = ? "
|
||
"LIMIT ?"
|
||
)
|
||
|
||
while front and len(event_results) < limit:
|
||
new_front = set()
|
||
for event_id in front:
|
||
txn.execute(
|
||
query, (room_id, event_id, False, limit - len(event_results))
|
||
)
|
||
|
||
new_results = {t[0] for t in txn} - seen_events
|
||
|
||
new_front |= new_results
|
||
seen_events |= new_results
|
||
event_results.extend(new_results)
|
||
|
||
front = new_front
|
||
|
||
# we built the list working backwards from latest_events; we now need to
|
||
# reverse it so that the events are approximately chronological.
|
||
event_results.reverse()
|
||
return event_results
|
||
|
||
async def get_successor_events(self, event_ids: Iterable[str]) -> List[str]:
|
||
"""Fetch all events that have the given events as a prev event
|
||
|
||
Args:
|
||
event_ids: The events to use as the previous events.
|
||
"""
|
||
rows = await self.db_pool.simple_select_many_batch(
|
||
table="event_edges",
|
||
column="prev_event_id",
|
||
iterable=event_ids,
|
||
retcols=("event_id",),
|
||
desc="get_successor_events",
|
||
)
|
||
|
||
return [row["event_id"] for row in rows]
|
||
|
||
@wrap_as_background_process("delete_old_forward_extrem_cache")
|
||
async def _delete_old_forward_extrem_cache(self) -> None:
|
||
def _delete_old_forward_extrem_cache_txn(txn):
|
||
# Delete entries older than a month, while making sure we don't delete
|
||
# the only entries for a room.
|
||
sql = """
|
||
DELETE FROM stream_ordering_to_exterm
|
||
WHERE
|
||
room_id IN (
|
||
SELECT room_id
|
||
FROM stream_ordering_to_exterm
|
||
WHERE stream_ordering > ?
|
||
) AND stream_ordering < ?
|
||
"""
|
||
txn.execute(
|
||
sql, (self.stream_ordering_month_ago, self.stream_ordering_month_ago)
|
||
)
|
||
|
||
await self.db_pool.runInteraction(
|
||
"_delete_old_forward_extrem_cache",
|
||
_delete_old_forward_extrem_cache_txn,
|
||
)
|
||
|
||
|
||
class EventFederationStore(EventFederationWorkerStore):
|
||
"""Responsible for storing and serving up the various graphs associated
|
||
with an event. Including the main event graph and the auth chains for an
|
||
event.
|
||
|
||
Also has methods for getting the front (latest) and back (oldest) edges
|
||
of the event graphs. These are used to generate the parents for new events
|
||
and backfilling from another server respectively.
|
||
"""
|
||
|
||
EVENT_AUTH_STATE_ONLY = "event_auth_state_only"
|
||
|
||
def __init__(self, database: DatabasePool, db_conn, hs):
|
||
super().__init__(database, db_conn, hs)
|
||
|
||
self.db_pool.updates.register_background_update_handler(
|
||
self.EVENT_AUTH_STATE_ONLY, self._background_delete_non_state_event_auth
|
||
)
|
||
|
||
async def clean_room_for_join(self, room_id):
|
||
return await self.db_pool.runInteraction(
|
||
"clean_room_for_join", self._clean_room_for_join_txn, room_id
|
||
)
|
||
|
||
def _clean_room_for_join_txn(self, txn, room_id):
|
||
query = "DELETE FROM event_forward_extremities WHERE room_id = ?"
|
||
|
||
txn.execute(query, (room_id,))
|
||
txn.call_after(self.get_latest_event_ids_in_room.invalidate, (room_id,))
|
||
|
||
async def _background_delete_non_state_event_auth(self, progress, batch_size):
|
||
def delete_event_auth(txn):
|
||
target_min_stream_id = progress.get("target_min_stream_id_inclusive")
|
||
max_stream_id = progress.get("max_stream_id_exclusive")
|
||
|
||
if not target_min_stream_id or not max_stream_id:
|
||
txn.execute("SELECT COALESCE(MIN(stream_ordering), 0) FROM events")
|
||
rows = txn.fetchall()
|
||
target_min_stream_id = rows[0][0]
|
||
|
||
txn.execute("SELECT COALESCE(MAX(stream_ordering), 0) FROM events")
|
||
rows = txn.fetchall()
|
||
max_stream_id = rows[0][0]
|
||
|
||
min_stream_id = max_stream_id - batch_size
|
||
|
||
sql = """
|
||
DELETE FROM event_auth
|
||
WHERE event_id IN (
|
||
SELECT event_id FROM events
|
||
LEFT JOIN state_events USING (room_id, event_id)
|
||
WHERE ? <= stream_ordering AND stream_ordering < ?
|
||
AND state_key IS null
|
||
)
|
||
"""
|
||
|
||
txn.execute(sql, (min_stream_id, max_stream_id))
|
||
|
||
new_progress = {
|
||
"target_min_stream_id_inclusive": target_min_stream_id,
|
||
"max_stream_id_exclusive": min_stream_id,
|
||
}
|
||
|
||
self.db_pool.updates._background_update_progress_txn(
|
||
txn, self.EVENT_AUTH_STATE_ONLY, new_progress
|
||
)
|
||
|
||
return min_stream_id >= target_min_stream_id
|
||
|
||
result = await self.db_pool.runInteraction(
|
||
self.EVENT_AUTH_STATE_ONLY, delete_event_auth
|
||
)
|
||
|
||
if not result:
|
||
await self.db_pool.updates._end_background_update(
|
||
self.EVENT_AUTH_STATE_ONLY
|
||
)
|
||
|
||
return batch_size
|