Fixes two related bugs:
* The handling of `[null]` for a `room_types` filter was incorrect.
* The ordering of arguments when providing both a network tuple
and room type field was incorrect.
c.f. #12993 (comment), point 3
This stores all device list updates that we receive while partial joins are ongoing, and processes them once we have the full state.
Note: We don't actually process the device lists in the same ways as if we weren't partially joined. Instead of updating the device list remote cache, we simply notify local users that a change in the remote user's devices has happened. I think this is safe as if the local user requests the keys for the remote user and we don't have them we'll simply fetch them as normal.
Use the provided list of servers in the room from the `/send_join`
response, since we will not know which users are in the room. This
isn't sufficient to ensure that all remote servers receive the right
device list updates, since the `/send_join` response may be inaccurate
or we may calculate the membership state of new users in the room
incorrectly.
Signed-off-by: Sean Quah <seanq@matrix.org>
Whenever we want to persist an event, we first compute an event context,
which includes the state at the event and a flag indicating whether the
state is partial. After a lot of processing, we finally try to store the
event in the database, which can fail for partial state events when the
containing room has been un-partial stated in the meantime.
We detect the race as a foreign key constraint failure in the data store
layer and turn it into a special `PartialStateConflictError` exception,
which makes its way up to the method in which we computed the event
context.
To make things difficult, the exception needs to cross a replication
request: `/fed_send_events` for events coming over federation and
`/send_event` for events from clients. We transport the
`PartialStateConflictError` as a `409 Conflict` over replication and
turn `409`s back into `PartialStateConflictError`s on the worker making
the request.
All client events go through
`EventCreationHandler.handle_new_client_event`, which is called in
*a lot* of places. Instead of trying to update all the code which
creates client events, we turn the `PartialStateConflictError` into a
`429 Too Many Requests` in
`EventCreationHandler.handle_new_client_event` and hope that clients
take it as a hint to retry their request.
On the federation event side, there are 7 places which compute event
contexts. 4 of them use outlier event contexts:
`FederationEventHandler._auth_and_persist_outliers_inner`,
`FederationHandler.do_knock`, `FederationHandler.on_invite_request` and
`FederationHandler.do_remotely_reject_invite`. These events won't have
the partial state flag, so we do not need to do anything for then.
The remaining 3 paths which create events are
`FederationEventHandler.process_remote_join`,
`FederationEventHandler.on_send_membership_event` and
`FederationEventHandler._process_received_pdu`.
We can't experience the race in `process_remote_join`, unless we're
handling an additional join into a partial state room, which currently
blocks, so we make no attempt to handle it correctly.
`on_send_membership_event` is only called by
`FederationServer._on_send_membership_event`, so we catch the
`PartialStateConflictError` there and retry just once.
`_process_received_pdu` is called by `on_receive_pdu` for incoming
events and `_process_pulled_event` for backfill. The latter should never
try to persist partial state events, so we ignore it. We catch the
`PartialStateConflictError` in `on_receive_pdu` and retry just once.
Refering to the graph of code paths in
https://github.com/matrix-org/synapse/issues/12988#issuecomment-1156857648
may make the above make more sense.
Signed-off-by: Sean Quah <seanq@matrix.org>
We work through all the events with partial state, updating the state at each
of them. Once it's done, we recalculate the state for the whole room, and then
mark the room as having complete state.
When we get a partial_state response from send_join, store information in the
database about it:
* store a record about the room as a whole having partial state, and stash the
list of member servers too.
* flag the join event itself as having partial state
* also, for any new events whose prev-events are partial-stated, note that
they will *also* be partial-stated.
We don't yet make any attempt to interpret this data, so API calls (and a bunch
of other things) are just going to get incorrect data.
Always add state.room_id after the configurable ORDER BY. Otherwise,
for any sort, certain pages can contain results from
other pages. (Especially when sorting by creator, since there may
be many rooms by the same creator)
* Document different order direction of numerical fields
"joined_members", "joined_local_members", "version" and "state_events"
are ordered in descending direction by default (dir=f). Added a note
in tests to explain the differences in ordering.
Signed-off-by: Daniël Sonck <daniel@sonck.nl>
Co-authored-by: Dirk Klimpel <5740567+dklimpel@users.noreply.github.com>
Co-authored-by: Andrew Morgan <1342360+anoadragon453@users.noreply.github.com>
Part of #9744
Removes all redundant `# -*- coding: utf-8 -*-` lines from files, as python 3 automatically reads source code as utf-8 now.
`Signed-off-by: Jonathan de Jong <jonathan@automatia.nl>`
- Update black version to the latest
- Run black auto formatting over the codebase
- Run autoformatting according to [`docs/code_style.md
`](80d6dc9783/docs/code_style.md)
- Update `code_style.md` docs around installing black to use the correct version
There's a handy function called maybe_store_room_on_invite which allows us to create an entry in the rooms table for a room and its version for which we aren't joined to yet, but we can reference when ingesting events about.
This is currently used for invites where we receive some stripped state about the room and pass it down via /sync to the client, without us being in the room yet.
There is a similar requirement for knocking, where we will eventually do the same thing, and need an entry in the rooms table as well. Thus, reusing this function works, however its name needs to be generalised a bit.
Separated out from #6739.