I idly noticed that these lists were out of sync with each other, causing us to miss a table in a test case (`local_invites`). Let's consolidate this list instead to prevent this from happening in the future.
We do it this way round so that only the "owner" can delete the access token (i.e. `/logout/all` by the "owner" also deletes that token, but `/logout/all` by the "target user" doesn't).
A future PR will add an API for creating such a token.
When the target user and authenticated entity are different the `Processed request` log line will be logged with a: `{@admin:server as @bob:server} ...`. I'm not convinced by that format (especially since it adds spaces in there, making it harder to use `cut -d ' '` to chop off the start of log lines). Suggestions welcome.
This modifies the configuration of structured logging to be usable from
the standard Python logging configuration.
This also separates the formatting of logs from the transport allowing
JSON logs to files or standard logs to sockets.
This allows trailing commas in multi-line arg lists.
Minor, but we might as well keep our formatting current with regard to
our minimum supported Python version.
Signed-off-by: Dan Callahan <danc@element.io>
Split admin API for reported events in detail und list view.
API was introduced with #8217 in synapse v.1.21.0.
It makes the list (`GET /_synapse/admin/v1/event_reports`) less complex and provides a better overview.
The details can be queried with: `GET /_synapse/admin/v1/event_reports/<report_id>`.
It is similar to room and users API.
It is a kind of regression in `GET /_synapse/admin/v1/event_reports`. `event_json` was removed. But the api was introduced one version before and it is an admin API (not under spec).
Signed-off-by: Dirk Klimpel dirk@klimpel.org
#8567 started a span for every background process. This is good as it means all Synapse code that gets run should be in a span (unless in the sentinel logging context), but it means we generate about 15x the number of spans as we did previously.
This PR attempts to reduce that number by a) not starting one for send commands to Redis, and b) deferring starting background processes until after we're sure they're necessary.
I don't really know how much this will help.
* Limit AS transactions to 100 events
* Update changelog.d/8606.feature
Co-authored-by: Andrew Morgan <1342360+anoadragon453@users.noreply.github.com>
* Add tests
* Update synapse/appservice/scheduler.py
Co-authored-by: Andrew Morgan <1342360+anoadragon453@users.noreply.github.com>
* Add `DeferredCache.get_immediate` method
A bunch of things that are currently calling `DeferredCache.get` are only
really interested in the result if it's completed. We can optimise and simplify
this case.
* Remove unused 'default' parameter to DeferredCache.get()
* another get_immediate instance
This implements a more standard API for instantiating a homeserver and
moves some of the dependency injection into the test suite.
More concretely this stops using `setattr` on all `kwargs` passed to `HomeServer`.
* Fix outbound federaion with multiple event persisters.
We incorrectly notified federation senders that the minimum persisted
stream position had advanced when we got an `RDATA` from an event
persister.
Notifying of federation senders already correctly happens in the
notifier, so we just delete the offending line.
* Change some interfaces to use RoomStreamToken.
By enforcing use of `RoomStreamTokens` we make it less likely that
people pass in random ints that they got from somewhere random.
Currently background proccesses stream the events stream use the "minimum persisted position" (i.e. `get_current_token()`) rather than the vector clock style tokens. This is broadly fine as it doesn't matter if the background processes lag a small amount. However, in extreme cases (i.e. SyTests) where we only write to one event persister the background processes will never make progress.
This PR changes it so that the `MultiWriterIDGenerator` keeps the current position of a given instance as up to date as possible (i.e using the latest token it sees if its not in the process of persisting anything), and then periodically announces that over replication. This then allows the "minimum persisted position" to advance, albeit with a small lag.