Bounce recalculation of current state to the correct event persister and
move recalculation of current state into the event persistence queue, to
avoid concurrent updates to a room's current state.
Also give recalculation of a room's current state a real stream
ordering.
Signed-off-by: Sean Quah <seanq@matrix.org>
Whenever we want to persist an event, we first compute an event context,
which includes the state at the event and a flag indicating whether the
state is partial. After a lot of processing, we finally try to store the
event in the database, which can fail for partial state events when the
containing room has been un-partial stated in the meantime.
We detect the race as a foreign key constraint failure in the data store
layer and turn it into a special `PartialStateConflictError` exception,
which makes its way up to the method in which we computed the event
context.
To make things difficult, the exception needs to cross a replication
request: `/fed_send_events` for events coming over federation and
`/send_event` for events from clients. We transport the
`PartialStateConflictError` as a `409 Conflict` over replication and
turn `409`s back into `PartialStateConflictError`s on the worker making
the request.
All client events go through
`EventCreationHandler.handle_new_client_event`, which is called in
*a lot* of places. Instead of trying to update all the code which
creates client events, we turn the `PartialStateConflictError` into a
`429 Too Many Requests` in
`EventCreationHandler.handle_new_client_event` and hope that clients
take it as a hint to retry their request.
On the federation event side, there are 7 places which compute event
contexts. 4 of them use outlier event contexts:
`FederationEventHandler._auth_and_persist_outliers_inner`,
`FederationHandler.do_knock`, `FederationHandler.on_invite_request` and
`FederationHandler.do_remotely_reject_invite`. These events won't have
the partial state flag, so we do not need to do anything for then.
The remaining 3 paths which create events are
`FederationEventHandler.process_remote_join`,
`FederationEventHandler.on_send_membership_event` and
`FederationEventHandler._process_received_pdu`.
We can't experience the race in `process_remote_join`, unless we're
handling an additional join into a partial state room, which currently
blocks, so we make no attempt to handle it correctly.
`on_send_membership_event` is only called by
`FederationServer._on_send_membership_event`, so we catch the
`PartialStateConflictError` there and retry just once.
`_process_received_pdu` is called by `on_receive_pdu` for incoming
events and `_process_pulled_event` for backfill. The latter should never
try to persist partial state events, so we ignore it. We catch the
`PartialStateConflictError` in `on_receive_pdu` and retry just once.
Refering to the graph of code paths in
https://github.com/matrix-org/synapse/issues/12988#issuecomment-1156857648
may make the above make more sense.
Signed-off-by: Sean Quah <seanq@matrix.org>
Instead, use the `room_version` property of the event we're validating.
The `room_version` was originally added as a parameter somewhere around #4482,
but really it's been redundant since #6875 added a `room_version` field to `EventBase`.
Refactor how the `EventContext` class works, with the intention of reducing the amount of state we fetch from the DB during event processing.
The idea here is to get rid of the cached `current_state_ids` and `prev_state_ids` that live in the `EventContext`, and instead defer straight to the database (and its caching).
One change that may have a noticeable effect is that we now no longer prefill the `get_current_state_ids` cache on a state change. However, that query is relatively light, since its just a case of reading a table from the DB (unlike fetching state at an event which is more heavyweight). For deployments with workers this cache isn't even used.
Part of #12684
Try to avoid an OOM by checking fewer extremities.
Generally this is a big rewrite of _maybe_backfill, to try and fix some of the TODOs and other problems in it. It's best reviewed commit-by-commit.
We work through all the events with partial state, updating the state at each
of them. Once it's done, we recalculate the state for the whole room, and then
mark the room as having complete state.
Refactor and convert `Linearizer` to async. This makes a `Linearizer`
cancellation bug easier to fix.
Also refactor to use an async context manager, which eliminates an
unlikely footgun where code that doesn't immediately use the context
manager could forget to release the lock.
Signed-off-by: Sean Quah <seanq@element.io>
When we get a partial_state response from send_join, store information in the
database about it:
* store a record about the room as a whole having partial state, and stash the
list of member servers too.
* flag the join event itself as having partial state
* also, for any new events whose prev-events are partial-stated, note that
they will *also* be partial-stated.
We don't yet make any attempt to interpret this data, so API calls (and a bunch
of other things) are just going to get incorrect data.
I've never found this terribly useful. I think it was added in the early days
of Synapse, without much thought as to what would actually be useful to log,
and has just been cargo-culted ever since.
Rather, it tends to clutter up debug logs with useless information.