mirror of
https://git.anonymousland.org/anonymousland/synapse.git
synced 2025-01-12 04:09:29 -05:00
remove old metrics libs
This commit is contained in:
parent
ab5e888927
commit
f258deffcb
@ -1,328 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright 2015, 2016 OpenMarket Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from itertools import chain
|
||||
import logging
|
||||
import re
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def flatten(items):
|
||||
"""Flatten a list of lists
|
||||
|
||||
Args:
|
||||
items: iterable[iterable[X]]
|
||||
|
||||
Returns:
|
||||
list[X]: flattened list
|
||||
"""
|
||||
return list(chain.from_iterable(items))
|
||||
|
||||
|
||||
class BaseMetric(object):
|
||||
"""Base class for metrics which report a single value per label set
|
||||
"""
|
||||
|
||||
def __init__(self, name, labels=[], alternative_names=[]):
|
||||
"""
|
||||
Args:
|
||||
name (str): principal name for this metric
|
||||
labels (list(str)): names of the labels which will be reported
|
||||
for this metric
|
||||
alternative_names (iterable(str)): list of alternative names for
|
||||
this metric. This can be useful to provide a migration path
|
||||
when renaming metrics.
|
||||
"""
|
||||
self._names = [name] + list(alternative_names)
|
||||
self.labels = labels # OK not to clone as we never write it
|
||||
|
||||
def dimension(self):
|
||||
return len(self.labels)
|
||||
|
||||
def is_scalar(self):
|
||||
return not len(self.labels)
|
||||
|
||||
def _render_labelvalue(self, value):
|
||||
return '"%s"' % (_escape_label_value(value),)
|
||||
|
||||
def _render_key(self, values):
|
||||
if self.is_scalar():
|
||||
return ""
|
||||
return "{%s}" % (
|
||||
",".join(["%s=%s" % (k, self._render_labelvalue(v))
|
||||
for k, v in zip(self.labels, values)])
|
||||
)
|
||||
|
||||
def _render_for_labels(self, label_values, value):
|
||||
"""Render this metric for a single set of labels
|
||||
|
||||
Args:
|
||||
label_values (list[object]): values for each of the labels,
|
||||
(which get stringified).
|
||||
value: value of the metric at with these labels
|
||||
|
||||
Returns:
|
||||
iterable[str]: rendered metric
|
||||
"""
|
||||
rendered_labels = self._render_key(label_values)
|
||||
return (
|
||||
"%s%s %.12g" % (name, rendered_labels, value)
|
||||
for name in self._names
|
||||
)
|
||||
|
||||
def render(self):
|
||||
"""Render this metric
|
||||
|
||||
Each metric is rendered as:
|
||||
|
||||
name{label1="val1",label2="val2"} value
|
||||
|
||||
https://prometheus.io/docs/instrumenting/exposition_formats/#text-format-details
|
||||
|
||||
Returns:
|
||||
iterable[str]: rendered metrics
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class CounterMetric(BaseMetric):
|
||||
"""The simplest kind of metric; one that stores a monotonically-increasing
|
||||
value that counts events or running totals.
|
||||
|
||||
Example use cases for Counters:
|
||||
- Number of requests processed
|
||||
- Number of items that were inserted into a queue
|
||||
- Total amount of data that a system has processed
|
||||
Counters can only go up (and be reset when the process restarts).
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(CounterMetric, self).__init__(*args, **kwargs)
|
||||
|
||||
# dict[list[str]]: value for each set of label values. the keys are the
|
||||
# label values, in the same order as the labels in self.labels.
|
||||
#
|
||||
# (if the metric is a scalar, the (single) key is the empty tuple).
|
||||
self.counts = {}
|
||||
|
||||
# Scalar metrics are never empty
|
||||
if self.is_scalar():
|
||||
self.counts[()] = 0.
|
||||
|
||||
def inc_by(self, incr, *values):
|
||||
if len(values) != self.dimension():
|
||||
raise ValueError(
|
||||
"Expected as many values to inc() as labels (%d)" % (self.dimension())
|
||||
)
|
||||
|
||||
# TODO: should assert that the tag values are all strings
|
||||
|
||||
if values not in self.counts:
|
||||
self.counts[values] = incr
|
||||
else:
|
||||
self.counts[values] += incr
|
||||
|
||||
def inc(self, *values):
|
||||
self.inc_by(1, *values)
|
||||
|
||||
def render(self):
|
||||
return flatten(
|
||||
self._render_for_labels(k, self.counts[k])
|
||||
for k in sorted(self.counts.keys())
|
||||
)
|
||||
|
||||
|
||||
class GaugeMetric(BaseMetric):
|
||||
"""A metric that can go up or down
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(GaugeMetric, self).__init__(*args, **kwargs)
|
||||
|
||||
# dict[list[str]]: value for each set of label values. the keys are the
|
||||
# label values, in the same order as the labels in self.labels.
|
||||
#
|
||||
# (if the metric is a scalar, the (single) key is the empty tuple).
|
||||
self.guages = {}
|
||||
|
||||
def set(self, v, *values):
|
||||
if len(values) != self.dimension():
|
||||
raise ValueError(
|
||||
"Expected as many values to inc() as labels (%d)" % (self.dimension())
|
||||
)
|
||||
|
||||
# TODO: should assert that the tag values are all strings
|
||||
|
||||
self.guages[values] = v
|
||||
|
||||
def render(self):
|
||||
return flatten(
|
||||
self._render_for_labels(k, self.guages[k])
|
||||
for k in sorted(self.guages.keys())
|
||||
)
|
||||
|
||||
|
||||
class CallbackMetric(BaseMetric):
|
||||
"""A metric that returns the numeric value returned by a callback whenever
|
||||
it is rendered. Typically this is used to implement gauges that yield the
|
||||
size or other state of some in-memory object by actively querying it."""
|
||||
|
||||
def __init__(self, name, callback, labels=[]):
|
||||
super(CallbackMetric, self).__init__(name, labels=labels)
|
||||
|
||||
self.callback = callback
|
||||
|
||||
def render(self):
|
||||
try:
|
||||
value = self.callback()
|
||||
except Exception:
|
||||
logger.exception("Failed to render %s", self.name)
|
||||
return ["# FAILED to render " + self.name]
|
||||
|
||||
if self.is_scalar():
|
||||
return list(self._render_for_labels([], value))
|
||||
|
||||
return flatten(
|
||||
self._render_for_labels(k, value[k])
|
||||
for k in sorted(value.keys())
|
||||
)
|
||||
|
||||
|
||||
class DistributionMetric(object):
|
||||
"""A combination of an event counter and an accumulator, which counts
|
||||
both the number of events and accumulates the total value. Typically this
|
||||
could be used to keep track of method-running times, or other distributions
|
||||
of values that occur in discrete occurances.
|
||||
|
||||
TODO(paul): Try to export some heatmap-style stats?
|
||||
"""
|
||||
|
||||
def __init__(self, name, *args, **kwargs):
|
||||
self.counts = CounterMetric(name + ":count", **kwargs)
|
||||
self.totals = CounterMetric(name + ":total", **kwargs)
|
||||
|
||||
def inc_by(self, inc, *values):
|
||||
self.counts.inc(*values)
|
||||
self.totals.inc_by(inc, *values)
|
||||
|
||||
def render(self):
|
||||
return self.counts.render() + self.totals.render()
|
||||
|
||||
|
||||
class CacheMetric(object):
|
||||
__slots__ = (
|
||||
"name", "cache_name", "hits", "misses", "evicted_size", "size_callback",
|
||||
)
|
||||
|
||||
def __init__(self, name, size_callback, cache_name):
|
||||
self.name = name
|
||||
self.cache_name = cache_name
|
||||
|
||||
self.hits = 0
|
||||
self.misses = 0
|
||||
self.evicted_size = 0
|
||||
|
||||
self.size_callback = size_callback
|
||||
|
||||
def inc_hits(self):
|
||||
self.hits += 1
|
||||
|
||||
def inc_misses(self):
|
||||
self.misses += 1
|
||||
|
||||
def inc_evictions(self, size=1):
|
||||
self.evicted_size += size
|
||||
|
||||
def render(self):
|
||||
size = self.size_callback()
|
||||
hits = self.hits
|
||||
total = self.misses + self.hits
|
||||
|
||||
return [
|
||||
"""%s:hits{name="%s"} %d""" % (self.name, self.cache_name, hits),
|
||||
"""%s:total{name="%s"} %d""" % (self.name, self.cache_name, total),
|
||||
"""%s:size{name="%s"} %d""" % (self.name, self.cache_name, size),
|
||||
"""%s:evicted_size{name="%s"} %d""" % (
|
||||
self.name, self.cache_name, self.evicted_size
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
class MemoryUsageMetric(object):
|
||||
"""Keeps track of the current memory usage, using psutil.
|
||||
|
||||
The class will keep the current min/max/sum/counts of rss over the last
|
||||
WINDOW_SIZE_SEC, by polling UPDATE_HZ times per second
|
||||
"""
|
||||
|
||||
UPDATE_HZ = 2 # number of times to get memory per second
|
||||
WINDOW_SIZE_SEC = 30 # the size of the window in seconds
|
||||
|
||||
def __init__(self, hs, psutil):
|
||||
clock = hs.get_clock()
|
||||
self.memory_snapshots = []
|
||||
|
||||
self.process = psutil.Process()
|
||||
|
||||
clock.looping_call(self._update_curr_values, 1000 / self.UPDATE_HZ)
|
||||
|
||||
def _update_curr_values(self):
|
||||
max_size = self.UPDATE_HZ * self.WINDOW_SIZE_SEC
|
||||
self.memory_snapshots.append(self.process.memory_info().rss)
|
||||
self.memory_snapshots[:] = self.memory_snapshots[-max_size:]
|
||||
|
||||
def render(self):
|
||||
if not self.memory_snapshots:
|
||||
return []
|
||||
|
||||
max_rss = max(self.memory_snapshots)
|
||||
min_rss = min(self.memory_snapshots)
|
||||
sum_rss = sum(self.memory_snapshots)
|
||||
len_rss = len(self.memory_snapshots)
|
||||
|
||||
return [
|
||||
"process_psutil_rss:max %d" % max_rss,
|
||||
"process_psutil_rss:min %d" % min_rss,
|
||||
"process_psutil_rss:total %d" % sum_rss,
|
||||
"process_psutil_rss:count %d" % len_rss,
|
||||
]
|
||||
|
||||
|
||||
def _escape_character(m):
|
||||
"""Replaces a single character with its escape sequence.
|
||||
|
||||
Args:
|
||||
m (re.MatchObject): A match object whose first group is the single
|
||||
character to replace
|
||||
|
||||
Returns:
|
||||
str
|
||||
"""
|
||||
c = m.group(1)
|
||||
if c == "\\":
|
||||
return "\\\\"
|
||||
elif c == "\"":
|
||||
return "\\\""
|
||||
elif c == "\n":
|
||||
return "\\n"
|
||||
return c
|
||||
|
||||
|
||||
def _escape_label_value(value):
|
||||
"""Takes a label value and escapes quotes, newlines and backslashes
|
||||
"""
|
||||
return re.sub(r"([\n\"\\])", _escape_character, str(value))
|
@ -1,122 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright 2015, 2016 OpenMarket Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
|
||||
|
||||
TICKS_PER_SEC = 100
|
||||
BYTES_PER_PAGE = 4096
|
||||
|
||||
HAVE_PROC_STAT = os.path.exists("/proc/stat")
|
||||
HAVE_PROC_SELF_STAT = os.path.exists("/proc/self/stat")
|
||||
HAVE_PROC_SELF_LIMITS = os.path.exists("/proc/self/limits")
|
||||
HAVE_PROC_SELF_FD = os.path.exists("/proc/self/fd")
|
||||
|
||||
# Field indexes from /proc/self/stat, taken from the proc(5) manpage
|
||||
STAT_FIELDS = {
|
||||
"utime": 14,
|
||||
"stime": 15,
|
||||
"starttime": 22,
|
||||
"vsize": 23,
|
||||
"rss": 24,
|
||||
}
|
||||
|
||||
|
||||
stats = {}
|
||||
|
||||
# In order to report process_start_time_seconds we need to know the
|
||||
# machine's boot time, because the value in /proc/self/stat is relative to
|
||||
# this
|
||||
boot_time = None
|
||||
if HAVE_PROC_STAT:
|
||||
with open("/proc/stat") as _procstat:
|
||||
for line in _procstat:
|
||||
if line.startswith("btime "):
|
||||
boot_time = int(line.split()[1])
|
||||
|
||||
|
||||
def update_resource_metrics():
|
||||
if HAVE_PROC_SELF_STAT:
|
||||
global stats
|
||||
with open("/proc/self/stat") as s:
|
||||
line = s.read()
|
||||
# line is PID (command) more stats go here ...
|
||||
raw_stats = line.split(") ", 1)[1].split(" ")
|
||||
|
||||
for (name, index) in STAT_FIELDS.iteritems():
|
||||
# subtract 3 from the index, because proc(5) is 1-based, and
|
||||
# we've lost the first two fields in PID and COMMAND above
|
||||
stats[name] = int(raw_stats[index - 3])
|
||||
|
||||
|
||||
def _count_fds():
|
||||
# Not every OS will have a /proc/self/fd directory
|
||||
if not HAVE_PROC_SELF_FD:
|
||||
return 0
|
||||
|
||||
return len(os.listdir("/proc/self/fd"))
|
||||
|
||||
|
||||
def register_process_collector(process_metrics):
|
||||
process_metrics.register_collector(update_resource_metrics)
|
||||
|
||||
if HAVE_PROC_SELF_STAT:
|
||||
process_metrics.register_callback(
|
||||
"cpu_user_seconds_total",
|
||||
lambda: float(stats["utime"]) / TICKS_PER_SEC
|
||||
)
|
||||
process_metrics.register_callback(
|
||||
"cpu_system_seconds_total",
|
||||
lambda: float(stats["stime"]) / TICKS_PER_SEC
|
||||
)
|
||||
process_metrics.register_callback(
|
||||
"cpu_seconds_total",
|
||||
lambda: (float(stats["utime"] + stats["stime"])) / TICKS_PER_SEC
|
||||
)
|
||||
|
||||
process_metrics.register_callback(
|
||||
"virtual_memory_bytes",
|
||||
lambda: int(stats["vsize"])
|
||||
)
|
||||
process_metrics.register_callback(
|
||||
"resident_memory_bytes",
|
||||
lambda: int(stats["rss"]) * BYTES_PER_PAGE
|
||||
)
|
||||
|
||||
process_metrics.register_callback(
|
||||
"start_time_seconds",
|
||||
lambda: boot_time + int(stats["starttime"]) / TICKS_PER_SEC
|
||||
)
|
||||
|
||||
if HAVE_PROC_SELF_FD:
|
||||
process_metrics.register_callback(
|
||||
"open_fds",
|
||||
lambda: _count_fds()
|
||||
)
|
||||
|
||||
if HAVE_PROC_SELF_LIMITS:
|
||||
def _get_max_fds():
|
||||
with open("/proc/self/limits") as limits:
|
||||
for line in limits:
|
||||
if not line.startswith("Max open files "):
|
||||
continue
|
||||
# Line is Max open files $SOFT $HARD
|
||||
return int(line.split()[3])
|
||||
return None
|
||||
|
||||
process_metrics.register_callback(
|
||||
"max_fds",
|
||||
lambda: _get_max_fds()
|
||||
)
|
Loading…
Reference in New Issue
Block a user