anonymousland-synapse/synapse/metrics/__init__.py

627 lines
20 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
2016-01-06 23:26:29 -05:00
# Copyright 2015, 2016 OpenMarket Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2015-08-13 06:38:59 -04:00
import functools
import gc
import itertools
2018-07-09 02:09:20 -04:00
import logging
2018-05-23 14:03:56 -04:00
import os
import platform
import threading
2018-07-09 02:09:20 -04:00
import time
from typing import Callable, Dict, Iterable, Optional, Tuple, Union
2015-08-13 06:38:59 -04:00
2018-07-09 02:09:20 -04:00
import attr
from prometheus_client import Counter, Gauge, Histogram
from prometheus_client.core import (
REGISTRY,
CounterMetricFamily,
GaugeHistogramMetricFamily,
GaugeMetricFamily,
)
2018-05-21 20:47:37 -04:00
from twisted.internet import reactor
import synapse
from synapse.metrics._exposition import (
MetricsResource,
generate_latest,
start_http_server,
)
from synapse.util.versionstring import get_version_string
logger = logging.getLogger(__name__)
METRICS_PREFIX = "/_synapse/metrics"
2018-05-22 18:32:57 -04:00
running_on_pypy = platform.python_implementation() == "PyPy"
all_gauges = {} # type: Dict[str, Union[LaterGauge, InFlightGauge]]
HAVE_PROC_SELF_STAT = os.path.exists("/proc/self/stat")
2018-05-22 17:28:23 -04:00
2018-05-28 21:32:15 -04:00
2020-09-04 06:54:56 -04:00
class RegistryProxy:
@staticmethod
def collect():
2018-05-22 17:28:23 -04:00
for metric in REGISTRY.collect():
if not metric.name.startswith("__"):
yield metric
@attr.s(slots=True, hash=True)
2020-09-04 06:54:56 -04:00
class LaterGauge:
name = attr.ib(type=str)
desc = attr.ib(type=str)
labels = attr.ib(hash=False, type=Optional[Iterable[str]])
# callback: should either return a value (if there are no labels for this metric),
# or dict mapping from a label tuple to a value
caller = attr.ib(type=Callable[[], Union[Dict[Tuple[str, ...], float], float]])
2018-04-11 06:07:33 -04:00
2018-05-21 20:47:37 -04:00
def collect(self):
2018-05-22 17:28:23 -04:00
g = GaugeMetricFamily(self.name, self.desc, labels=self.labels)
2018-05-21 20:47:37 -04:00
try:
calls = self.caller()
except Exception:
logger.exception("Exception running callback for LaterGauge(%s)", self.name)
2018-05-21 20:47:37 -04:00
yield g
return
2018-05-21 20:47:37 -04:00
if isinstance(calls, dict):
for k, v in calls.items():
2018-05-21 20:47:37 -04:00
g.add_metric(k, v)
else:
g.add_metric([], calls)
2018-05-21 20:47:37 -04:00
yield g
def __attrs_post_init__(self):
self._register()
def _register(self):
2018-05-21 20:47:37 -04:00
if self.name in all_gauges.keys():
logger.warning("%s already registered, reregistering" % (self.name,))
REGISTRY.unregister(all_gauges.pop(self.name))
REGISTRY.register(self)
all_gauges[self.name] = self
2020-09-04 06:54:56 -04:00
class InFlightGauge:
"""Tracks number of things (e.g. requests, Measure blocks, etc) in flight
at any given time.
Each InFlightGauge will create a metric called `<name>_total` that counts
the number of in flight blocks, as well as a metrics for each item in the
given `sub_metrics` as `<name>_<sub_metric>` which will get updated by the
callbacks.
Args:
name (str)
desc (str)
labels (list[str])
sub_metrics (list[str]): A list of sub metrics that the callbacks
will update.
"""
def __init__(self, name, desc, labels, sub_metrics):
self.name = name
self.desc = desc
self.labels = labels
self.sub_metrics = sub_metrics
# Create a class which have the sub_metrics values as attributes, which
# default to 0 on initialization. Used to pass to registered callbacks.
self._metrics_class = attr.make_class(
"_MetricsEntry", attrs={x: attr.ib(0) for x in sub_metrics}, slots=True
)
# Counts number of in flight blocks for a given set of label values
self._registrations = {} # type: Dict
# Protects access to _registrations
self._lock = threading.Lock()
self._register_with_collector()
def register(self, key, callback):
"""Registers that we've entered a new block with labels `key`.
`callback` gets called each time the metrics are collected. The same
value must also be given to `unregister`.
`callback` gets called with an object that has an attribute per
sub_metric, which should be updated with the necessary values. Note that
the metrics object is shared between all callbacks registered with the
same key.
Note that `callback` may be called on a separate thread.
"""
with self._lock:
self._registrations.setdefault(key, set()).add(callback)
def unregister(self, key, callback):
"""Registers that we've exited a block with labels `key`."""
with self._lock:
self._registrations.setdefault(key, set()).discard(callback)
def collect(self):
"""Called by prometheus client when it reads metrics.
Note: may be called by a separate thread.
"""
in_flight = GaugeMetricFamily(
self.name + "_total", self.desc, labels=self.labels
)
metrics_by_key = {}
# We copy so that we don't mutate the list while iterating
with self._lock:
keys = list(self._registrations)
for key in keys:
with self._lock:
callbacks = set(self._registrations[key])
in_flight.add_metric(key, len(callbacks))
metrics = self._metrics_class()
metrics_by_key[key] = metrics
for callback in callbacks:
callback(metrics)
yield in_flight
for name in self.sub_metrics:
gauge = GaugeMetricFamily(
"_".join([self.name, name]), "", labels=self.labels
)
for key, metrics in metrics_by_key.items():
gauge.add_metric(key, getattr(metrics, name))
yield gauge
def _register_with_collector(self):
if self.name in all_gauges.keys():
logger.warning("%s already registered, reregistering" % (self.name,))
2018-05-21 20:47:37 -04:00
REGISTRY.unregister(all_gauges.pop(self.name))
2018-05-21 20:47:37 -04:00
REGISTRY.register(self)
all_gauges[self.name] = self
class GaugeBucketCollector:
"""Like a Histogram, but the buckets are Gauges which are updated atomically.
The data is updated by calling `update_data` with an iterable of measurements.
We assume that the data is updated less frequently than it is reported to
Prometheus, and optimise for that case.
"""
__slots__ = (
"_name",
"_documentation",
"_bucket_bounds",
"_metric",
)
def __init__(
self,
name: str,
documentation: str,
buckets: Iterable[float],
registry=REGISTRY,
):
"""
Args:
name: base name of metric to be exported to Prometheus. (a _bucket suffix
will be added.)
documentation: help text for the metric
buckets: The top bounds of the buckets to report
registry: metric registry to register with
"""
self._name = name
self._documentation = documentation
# the tops of the buckets
self._bucket_bounds = [float(b) for b in buckets]
if self._bucket_bounds != sorted(self._bucket_bounds):
raise ValueError("Buckets not in sorted order")
if self._bucket_bounds[-1] != float("inf"):
self._bucket_bounds.append(float("inf"))
# We initially set this to None. We won't report metrics until
# this has been initialised after a successful data update
self._metric = None # type: Optional[GaugeHistogramMetricFamily]
registry.register(self)
def collect(self):
# Don't report metrics unless we've already collected some data
if self._metric is not None:
yield self._metric
def update_data(self, values: Iterable[float]):
"""Update the data to be reported by the metric
The existing data is cleared, and each measurement in the input is assigned
to the relevant bucket.
"""
self._metric = self._values_to_metric(values)
def _values_to_metric(self, values: Iterable[float]) -> GaugeHistogramMetricFamily:
total = 0.0
bucket_values = [0 for _ in self._bucket_bounds]
for v in values:
# assign each value to a bucket
for i, bound in enumerate(self._bucket_bounds):
if v <= bound:
bucket_values[i] += 1
break
# ... and increment the sum
total += v
# now, aggregate the bucket values so that they count the number of entries in
# that bucket or below.
accumulated_values = itertools.accumulate(bucket_values)
return GaugeHistogramMetricFamily(
self._name,
self._documentation,
buckets=list(
zip((str(b) for b in self._bucket_bounds), accumulated_values)
),
gsum_value=total,
)
2018-05-23 14:03:56 -04:00
#
# Detailed CPU metrics
#
2020-09-04 06:54:56 -04:00
class CPUMetrics:
2018-05-23 14:03:56 -04:00
def __init__(self):
ticks_per_sec = 100
try:
# Try and get the system config
2019-06-20 05:32:02 -04:00
ticks_per_sec = os.sysconf("SC_CLK_TCK")
2018-05-23 14:03:56 -04:00
except (ValueError, TypeError, AttributeError):
pass
self.ticks_per_sec = ticks_per_sec
def collect(self):
if not HAVE_PROC_SELF_STAT:
return
2018-05-23 14:03:56 -04:00
with open("/proc/self/stat") as s:
line = s.read()
raw_stats = line.split(") ", 1)[1].split(" ")
user = GaugeMetricFamily("process_cpu_user_seconds_total", "")
user.add_metric([], float(raw_stats[11]) / self.ticks_per_sec)
yield user
sys = GaugeMetricFamily("process_cpu_system_seconds_total", "")
sys.add_metric([], float(raw_stats[12]) / self.ticks_per_sec)
yield sys
2018-05-23 14:08:59 -04:00
2018-05-23 14:03:56 -04:00
REGISTRY.register(CPUMetrics())
2018-05-21 20:47:37 -04:00
#
# Python GC metrics
#
2018-05-21 20:47:37 -04:00
gc_unreachable = Gauge("python_gc_unreachable_total", "Unreachable GC objects", ["gen"])
2018-05-22 18:32:57 -04:00
gc_time = Histogram(
"python_gc_time",
2018-05-28 05:10:27 -04:00
"Time taken to GC (sec)",
2018-05-22 18:32:57 -04:00
["gen"],
buckets=[
0.0025,
0.005,
0.01,
0.025,
0.05,
0.10,
0.25,
0.50,
1.00,
2.50,
5.00,
7.50,
15.00,
30.00,
45.00,
60.00,
],
2018-05-22 18:32:57 -04:00
)
2020-09-04 06:54:56 -04:00
class GCCounts:
2018-05-21 20:47:37 -04:00
def collect(self):
cm = GaugeMetricFamily("python_gc_counts", "GC object counts", labels=["gen"])
2018-05-21 20:47:37 -04:00
for n, m in enumerate(gc.get_count()):
cm.add_metric([str(n)], m)
2018-05-21 20:47:37 -04:00
yield cm
2018-05-22 18:32:57 -04:00
if not running_on_pypy:
REGISTRY.register(GCCounts())
#
# PyPy GC / memory metrics
#
2020-09-04 06:54:56 -04:00
class PyPyGCStats:
def collect(self):
# @stats is a pretty-printer object with __str__() returning a nice table,
# plus some fields that contain data from that table.
# unfortunately, fields are pretty-printed themselves (i. e. '4.5MB').
stats = gc.get_stats(memory_pressure=False) # type: ignore
# @s contains same fields as @stats, but as actual integers.
s = stats._s # type: ignore
# also note that field naming is completely braindead
# and only vaguely correlates with the pretty-printed table.
# >>>> gc.get_stats(False)
# Total memory consumed:
# GC used: 8.7MB (peak: 39.0MB) # s.total_gc_memory, s.peak_memory
# in arenas: 3.0MB # s.total_arena_memory
# rawmalloced: 1.7MB # s.total_rawmalloced_memory
# nursery: 4.0MB # s.nursery_size
# raw assembler used: 31.0kB # s.jit_backend_used
# -----------------------------
# Total: 8.8MB # stats.memory_used_sum
#
# Total memory allocated:
# GC allocated: 38.7MB (peak: 41.1MB) # s.total_allocated_memory, s.peak_allocated_memory
# in arenas: 30.9MB # s.peak_arena_memory
# rawmalloced: 4.1MB # s.peak_rawmalloced_memory
# nursery: 4.0MB # s.nursery_size
# raw assembler allocated: 1.0MB # s.jit_backend_allocated
# -----------------------------
# Total: 39.7MB # stats.memory_allocated_sum
#
# Total time spent in GC: 0.073 # s.total_gc_time
pypy_gc_time = CounterMetricFamily(
"pypy_gc_time_seconds_total",
"Total time spent in PyPy GC",
labels=[],
)
pypy_gc_time.add_metric([], s.total_gc_time / 1000)
yield pypy_gc_time
pypy_mem = GaugeMetricFamily(
"pypy_memory_bytes",
"Memory tracked by PyPy allocator",
labels=["state", "class", "kind"],
)
# memory used by JIT assembler
pypy_mem.add_metric(["used", "", "jit"], s.jit_backend_used)
pypy_mem.add_metric(["allocated", "", "jit"], s.jit_backend_allocated)
# memory used by GCed objects
pypy_mem.add_metric(["used", "", "arenas"], s.total_arena_memory)
pypy_mem.add_metric(["allocated", "", "arenas"], s.peak_arena_memory)
pypy_mem.add_metric(["used", "", "rawmalloced"], s.total_rawmalloced_memory)
pypy_mem.add_metric(["allocated", "", "rawmalloced"], s.peak_rawmalloced_memory)
pypy_mem.add_metric(["used", "", "nursery"], s.nursery_size)
pypy_mem.add_metric(["allocated", "", "nursery"], s.nursery_size)
# totals
pypy_mem.add_metric(["used", "totals", "gc"], s.total_gc_memory)
pypy_mem.add_metric(["allocated", "totals", "gc"], s.total_allocated_memory)
pypy_mem.add_metric(["used", "totals", "gc_peak"], s.peak_memory)
pypy_mem.add_metric(["allocated", "totals", "gc_peak"], s.peak_allocated_memory)
yield pypy_mem
if running_on_pypy:
REGISTRY.register(PyPyGCStats())
2018-05-21 20:47:37 -04:00
#
# Twisted reactor metrics
#
2018-05-22 18:32:57 -04:00
tick_time = Histogram(
"python_twisted_reactor_tick_time",
2018-05-28 05:10:27 -04:00
"Tick time of the Twisted reactor (sec)",
2018-05-28 05:16:09 -04:00
buckets=[0.001, 0.002, 0.005, 0.01, 0.025, 0.05, 0.1, 0.2, 0.5, 1, 2, 5],
2018-05-22 18:32:57 -04:00
)
pending_calls_metric = Histogram(
"python_twisted_reactor_pending_calls",
"Pending calls",
buckets=[1, 2, 5, 10, 25, 50, 100, 250, 500, 1000],
)
2015-08-13 06:38:59 -04:00
2018-05-21 20:47:37 -04:00
#
# Federation Metrics
#
2015-08-13 06:38:59 -04:00
2018-05-21 20:47:37 -04:00
sent_transactions_counter = Counter("synapse_federation_client_sent_transactions", "")
2018-05-21 20:47:37 -04:00
events_processed_counter = Counter("synapse_federation_client_events_processed", "")
event_processing_loop_counter = Counter(
"synapse_event_processing_loop_count", "Event processing loop iterations", ["name"]
)
event_processing_loop_room_count = Counter(
"synapse_event_processing_loop_room_count",
"Rooms seen per event processing loop iteration",
["name"],
)
# Used to track where various components have processed in the event stream,
# e.g. federation sending, appservice sending, etc.
2018-05-21 20:47:37 -04:00
event_processing_positions = Gauge("synapse_event_processing_positions", "", ["name"])
# Used to track the current max events stream position
2018-05-21 20:47:37 -04:00
event_persisted_position = Gauge("synapse_event_persisted_position", "")
2018-04-11 06:52:19 -04:00
# Used to track the received_ts of the last event processed by various
# components
2018-05-21 20:47:37 -04:00
event_processing_last_ts = Gauge("synapse_event_processing_last_ts", "", ["name"])
2018-04-11 06:52:19 -04:00
# Used to track the lag processing events. This is the time difference
# between the last processed event's received_ts and the time it was
# finished being processed.
2018-05-21 20:47:37 -04:00
event_processing_lag = Gauge("synapse_event_processing_lag", "", ["name"])
2015-08-13 06:38:59 -04:00
event_processing_lag_by_event = Histogram(
"synapse_event_processing_lag_by_event",
"Time between an event being persisted and it being queued up to be sent to the relevant remote servers",
["name"],
)
# Build info of the running server.
build_info = Gauge(
"synapse_build_info", "Build information", ["pythonversion", "version", "osversion"]
)
build_info.labels(
" ".join([platform.python_implementation(), platform.python_version()]),
get_version_string(synapse),
" ".join([platform.system(), platform.release()]),
).set(1)
2018-06-14 06:26:59 -04:00
last_ticked = time.time()
# 3PID send info
threepid_send_requests = Histogram(
"synapse_threepid_send_requests_with_tries",
documentation="Number of requests for a 3pid token by try count. Note if"
" there is a request with try count of 4, then there would have been one"
" each for 1, 2 and 3",
buckets=(1, 2, 3, 4, 5, 10),
labelnames=("type", "reason"),
)
2018-06-14 06:26:59 -04:00
2020-09-04 06:54:56 -04:00
class ReactorLastSeenMetric:
2018-06-14 06:26:59 -04:00
def collect(self):
cm = GaugeMetricFamily(
"python_twisted_reactor_last_seen",
"Seconds since the Twisted reactor was last seen",
)
cm.add_metric([], time.time() - last_ticked)
yield cm
REGISTRY.register(ReactorLastSeenMetric())
2018-05-22 18:32:57 -04:00
def runUntilCurrentTimer(reactor, func):
2015-08-13 06:38:59 -04:00
@functools.wraps(func)
def f(*args, **kwargs):
2015-08-14 10:42:52 -04:00
now = reactor.seconds()
num_pending = 0
# _newTimedCalls is one long list of *all* pending calls. Below loop
# is based off of impl of reactor.runUntilCurrent
2015-08-18 06:47:00 -04:00
for delayed_call in reactor._newTimedCalls:
if delayed_call.time > now:
2015-08-14 10:42:52 -04:00
break
2015-08-18 06:47:00 -04:00
if delayed_call.delayed_time > 0:
2015-08-14 10:42:52 -04:00
continue
num_pending += 1
num_pending += len(reactor.threadCallQueue)
2018-05-28 05:10:27 -04:00
start = time.time()
2015-08-13 06:38:59 -04:00
ret = func(*args, **kwargs)
2018-05-28 05:10:27 -04:00
end = time.time()
# record the amount of wallclock time spent running pending calls.
# This is a proxy for the actual amount of time between reactor polls,
# since about 25% of time is actually spent running things triggered by
# I/O events, but that is harder to capture without rewriting half the
# reactor.
2018-05-21 20:47:37 -04:00
tick_time.observe(end - start)
pending_calls_metric.observe(num_pending)
2018-06-14 06:26:59 -04:00
# Update the time we last ticked, for the metric to test whether
# Synapse's reactor has frozen
global last_ticked
last_ticked = end
if running_on_pypy:
return ret
2016-05-13 11:31:08 -04:00
# Check if we need to do a manual GC (since its been disabled), and do
# one if necessary.
threshold = gc.get_threshold()
counts = gc.get_count()
for i in (2, 1, 0):
if threshold[i] < counts[i]:
2019-06-28 07:45:33 -04:00
if i == 0:
logger.debug("Collecting gc %d", i)
else:
logger.info("Collecting gc %d", i)
2016-05-16 04:32:29 -04:00
2018-05-28 05:10:27 -04:00
start = time.time()
unreachable = gc.collect(i)
2018-05-28 05:10:27 -04:00
end = time.time()
2016-05-16 04:32:29 -04:00
2018-05-21 20:47:37 -04:00
gc_time.labels(i).observe(end - start)
gc_unreachable.labels(i).set(unreachable)
2015-08-13 06:38:59 -04:00
return ret
return f
try:
# Ensure the reactor has all the attributes we expect
reactor.seconds # type: ignore
reactor.runUntilCurrent # type: ignore
reactor._newTimedCalls # type: ignore
reactor.threadCallQueue # type: ignore
2015-08-13 06:38:59 -04:00
# runUntilCurrent is called when we have pending calls. It is called once
# per iteratation after fd polling.
reactor.runUntilCurrent = runUntilCurrentTimer(reactor, reactor.runUntilCurrent) # type: ignore
2016-05-13 11:31:08 -04:00
# We manually run the GC each reactor tick so that we can get some metrics
# about time spent doing GC,
if not running_on_pypy:
gc.disable()
except AttributeError:
pass
__all__ = [
"MetricsResource",
"generate_latest",
"start_http_server",
"LaterGauge",
"InFlightGauge",
"BucketCollector",
]