#![allow(non_snake_case)] use curve25519_dalek::constants::ED25519_BASEPOINT_POINT; use curve25519_dalek::edwards::EdwardsPoint; use curve25519_dalek::scalar::Scalar; use hash_edwards_to_edwards::hash_point_to_point; use monero::blockdata::transaction::{ExtraField, KeyImage, SubField, TxOutTarget}; use monero::cryptonote::hash::Hashable; use monero::cryptonote::onetime_key::{KeyGenerator, MONERO_MUL_FACTOR}; use monero::util::key::H; use monero::util::ringct::{EcdhInfo, RctSig, RctSigBase, RctSigPrunable, RctType}; use monero::{ PrivateKey, PublicKey, Transaction, TransactionPrefix, TxIn, TxOut, VarInt, ViewPair, }; use monero_harness::Monero; use monero_rpc::monerod; use monero_rpc::monerod::{GetOutputsOut, MonerodRpc}; use monero_wallet::MonerodClientExt; use rand::rngs::OsRng; use rand::{thread_rng, CryptoRng, Rng, SeedableRng}; use std::convert::TryInto; use std::iter; use testcontainers::clients::Cli; async fn prepare_nodes(address: monero::Address, amount: u64) -> (monerod::Client, monero::Hash) { let cli = Cli::default(); let (monero, _monerod_container, _monero_wallet_rpc_containers) = Monero::new(&cli, vec![]).await.unwrap(); monero.init_miner().await.unwrap(); let wallet = monero.wallet("miner").expect("wallet to exist"); let transfer = wallet .transfer(&address.to_string(), amount) .await .expect("lock to succeed"); let monerod = monero.monerod().client(); let miner_address = wallet .address() .await .expect("miner address to exist") .address; monerod .generateblocks(10, miner_address) .await .expect("can generate blocks"); let lock_tx_hash = transfer.tx_hash.parse().unwrap(); (monerod.clone(), lock_tx_hash) } #[tokio::test] async fn monerod_integration_test() { let mut rng = rand::rngs::StdRng::from_seed([0u8; 32]); let s_a = curve25519_dalek::scalar::Scalar::random(&mut rng); let s_b = curve25519_dalek::scalar::Scalar::random(&mut rng); let lock_kp = monero::KeyPair { view: monero::PrivateKey::from_scalar(curve25519_dalek::scalar::Scalar::random(&mut rng)), spend: monero::PrivateKey::from_scalar(s_a + s_b), }; let lock_amount = 1_000_000_000_000; let fee = 400_000_000; let spend_amount = lock_amount - fee; let lock_address = monero::Address::from_keypair(monero::Network::Mainnet, &lock_kp); dbg!(lock_address.to_string()); // 45BcRKAHaA4b5A9SdamF2f1w7zk1mKkBPhaqVoDWzuAtMoSAytzm5A6b2fE6ruupkAFmStrQzdojUExt96mR3oiiSKp8Exf let (client, lock_tx) = prepare_nodes(lock_address, lock_amount).await; let o_indexes_response = client.get_o_indexes(lock_tx).await.unwrap(); let transaction = client .get_transactions(&[lock_tx]) .await .unwrap() .pop() .unwrap(); dbg!(&transaction.prefix.inputs); let viewpair = ViewPair::from(&lock_kp); let our_output = transaction .check_outputs(&viewpair, 0..1, 0..1) .expect("to have outputs in this transaction") .pop() .expect("to own at least one output"); let actual_lock_amount = transaction.get_amount(&viewpair, &our_output).unwrap(); assert_eq!(actual_lock_amount, lock_amount); let real_key_offset = o_indexes_response.o_indexes[our_output.index]; let (lower, upper) = client.calculate_key_offset_boundaries().await.unwrap(); let mut key_offsets = Vec::with_capacity(11); key_offsets.push(VarInt(real_key_offset)); for _ in 0..10 { loop { let decoy_offset = VarInt(rng.gen_range(lower.0, upper.0)); if key_offsets.contains(&decoy_offset) { continue; } key_offsets.push(decoy_offset); break; } } dbg!(&key_offsets); let response = client .get_outs( key_offsets .iter() .map(|offset| GetOutputsOut { amount: 0, index: offset.0, }) .collect(), ) .await .unwrap(); dbg!(&response); let ring = response .outs .iter() .map(|out| out.key.point.decompress().unwrap()) .collect::>() .try_into() .unwrap(); key_offsets.sort(); let relative_key_offsets = to_relative_offsets(&key_offsets); dbg!(&relative_key_offsets); let target_address = "498AVruCDWgP9Az9LjMm89VWjrBrSZ2W2K3HFBiyzzrRjUJWUcCVxvY1iitfuKoek2FdX6MKGAD9Qb1G1P8QgR5jPmmt3Vj".parse::().unwrap(); let ecdh_key_0 = PrivateKey::random(&mut rng); let (ecdh_info_0, out_blinding_0) = EcdhInfo::new_bulletproof(spend_amount, ecdh_key_0.scalar); let ecdh_key_1 = PrivateKey::random(&mut rng); let (ecdh_info_1, out_blinding_1) = EcdhInfo::new_bulletproof(spend_amount, ecdh_key_1.scalar); let (bulletproof, out_pk) = monero::make_bulletproof(&mut rng, &[spend_amount, 0], &[ out_blinding_0, out_blinding_1, ]) .unwrap(); let k_image = { let k = lock_kp.spend.scalar; let K = ViewPair::from(&lock_kp).spend.point; let k_image = k * hash_point_to_point(K.decompress().unwrap()); KeyImage { image: monero::cryptonote::hash::Hash(k_image.compress().to_bytes()), } }; let prefix = TransactionPrefix { version: VarInt(2), unlock_time: Default::default(), inputs: vec![TxIn::ToKey { amount: VarInt(0), key_offsets: relative_key_offsets, k_image, }], outputs: vec![ TxOut { amount: VarInt(0), target: TxOutTarget::ToKey { key: KeyGenerator::from_random( target_address.public_view, target_address.public_spend, ecdh_key_0, ) .one_time_key(0), // TODO: This must be the output index }, }, TxOut { amount: VarInt(0), target: TxOutTarget::ToKey { key: KeyGenerator::from_random( target_address.public_view, target_address.public_spend, ecdh_key_1, ) .one_time_key(1), // TODO: This must be the output index }, }, ], extra: ExtraField(vec![ SubField::TxPublicKey(PublicKey::from_private_key(&ecdh_key_0)), SubField::TxPublicKey(PublicKey::from_private_key(&ecdh_key_1)), ]), }; // assert_eq!(prefix.hash(), // "c3ded4d1a8cddd4f76c09b63edff4e312e759b3afc46beda4e1fd75c9c68d997".parse(). // unwrap()); let s_prime_a = s_a + KeyGenerator::from_key(&viewpair, our_output.tx_pubkey) .get_rvn_scalar(our_output.index) .scalar; let (adaptor_sig, adaptor) = single_party_adaptor_sig(s_prime_a, s_b, ring, &prefix.hash().to_bytes(), &mut rng); let sig = adaptor_sig.adapt(adaptor); // let pseudo_out = { // let lock_amount = Scalar::from(lock_amount); // // (out_blinding * ED25519_BASEPOINT_POINT) + (lock_amount * // H.point.decompress().unwrap()) }; monero::verify_bulletproof(&mut thread_rng(), bulletproof.clone(), out_pk.clone()).unwrap(); let out_pk = out_pk .into_iter() .map(|p| (p.decompress().unwrap() * Scalar::from(MONERO_MUL_FACTOR)).compress()) .collect::>(); let fee_key = Scalar::from(fee) * H.point.decompress().unwrap(); let pseudo_out = fee_key + out_pk[0].decompress().unwrap() + out_pk[1].decompress().unwrap(); let out_pk = out_pk .iter() .map(|c| monero::util::ringct::CtKey { mask: monero::util::ringct::Key { key: c.to_bytes() }, }) .collect::>(); let transaction = Transaction { prefix, signatures: Vec::new(), rct_signatures: RctSig { sig: Some(RctSigBase { rct_type: RctType::Clsag, txn_fee: VarInt(fee), pseudo_outs: Vec::new(), ecdh_info: vec![ecdh_info_0, ecdh_info_1], out_pk, }), p: Some(RctSigPrunable { range_sigs: Vec::new(), bulletproofs: vec![bulletproof], MGs: Vec::new(), Clsags: vec![sig.into()], pseudo_outs: vec![monero::util::ringct::Key { key: pseudo_out.compress().0, }], }), }, }; client.send_raw_transaction(transaction).await.unwrap(); } fn to_relative_offsets(offsets: &[VarInt]) -> Vec { let vals = offsets.iter(); let next_vals = offsets.iter().skip(1); let diffs = vals .zip(next_vals) .map(|(cur, next)| VarInt(next.0 - cur.0)); iter::once(offsets[0].clone()).chain(diffs).collect() } /// First element of ring is the real pk. fn single_party_adaptor_sig( s_prime_a: Scalar, s_b: Scalar, ring: [EdwardsPoint; monero_adaptor::RING_SIZE], msg: &[u8; 32], rng: &mut (impl Rng + CryptoRng), ) -> (monero_adaptor::AdaptorSignature, Scalar) { let (r_a, R_a, R_prime_a) = { let r_a = Scalar::random(&mut OsRng); let R_a = r_a * ED25519_BASEPOINT_POINT; let pk_hashed_to_point = hash_point_to_point(ring[0]); let R_prime_a = r_a * pk_hashed_to_point; (r_a, R_a, R_prime_a) }; let alice = monero_adaptor::Alice0::new(ring, *msg, R_a, R_prime_a, s_prime_a, rng).unwrap(); let bob = monero_adaptor::Bob0::new(ring, *msg, R_a, R_prime_a, s_b, rng).unwrap(); let msg = alice.next_message(rng); let bob = bob.receive(msg); let msg = bob.next_message(rng); let alice = alice.receive(msg).unwrap(); let msg = alice.next_message(); let bob = bob.receive(msg).unwrap(); let msg = bob.next_message(); let alice = alice.receive(msg); (alice.adaptor_sig, r_a) } #[cfg(test)] mod tests { use super::*; #[test] fn calculate_relative_key_offsets() { let key_offsets = [ VarInt(78), VarInt(81), VarInt(91), VarInt(91), VarInt(96), VarInt(98), VarInt(101), VarInt(112), VarInt(113), VarInt(114), VarInt(117), ]; let relative_offsets = to_relative_offsets(&key_offsets); assert_eq!(&relative_offsets, &[ VarInt(78), VarInt(3), VarInt(10), VarInt(0), VarInt(5), VarInt(2), VarInt(3), VarInt(11), VarInt(1), VarInt(1), VarInt(3), ]) } }