use crate::{ alice, bitcoin::{ self, BroadcastSignedTransaction, BuildTxLockPsbt, SignTxLock, TxCancel, WatchForRawTransaction, }, monero, monero::{CreateWalletForOutput, WatchForTransfer}, serde::{bitcoin_amount, cross_curve_dleq_scalar, monero_private_key}, transport::{ReceiveMessage, SendMessage}, }; use anyhow::{anyhow, Result}; use ecdsa_fun::{ adaptor::{Adaptor, EncryptedSignature}, nonce::Deterministic, Signature, }; use rand::{CryptoRng, RngCore}; use serde::{Deserialize, Serialize}; use sha2::Sha256; use std::convert::{TryFrom, TryInto}; pub mod message; pub use message::{Message, Message0, Message1, Message2, Message3}; // There are no guarantees that send_message and receive_massage do not block // the flow of execution. Therefore they must be paired between Alice/Bob, one // send to one receive in the correct order. pub async fn next_state< R: RngCore + CryptoRng, B: WatchForRawTransaction + SignTxLock + BuildTxLockPsbt + BroadcastSignedTransaction, M: CreateWalletForOutput + WatchForTransfer, T: SendMessage + ReceiveMessage, >( bitcoin_wallet: &B, monero_wallet: &M, transport: &mut T, state: State, rng: &mut R, ) -> Result { match state { State::State0(state0) => { transport .send_message(state0.next_message(rng).into()) .await?; let message0 = transport.receive_message().await?.try_into()?; let state1 = state0.receive(bitcoin_wallet, message0).await?; Ok(state1.into()) } State::State1(state1) => { transport.send_message(state1.next_message().into()).await?; let message1 = transport.receive_message().await?.try_into()?; let state2 = state1.receive(message1)?; let message2 = state2.next_message(); transport.send_message(message2.into()).await?; Ok(state2.into()) } State::State2(state2) => { let state3 = state2.lock_btc(bitcoin_wallet).await?; tracing::info!("bob has locked btc"); Ok(state3.into()) } State::State3(state3) => { let message2 = transport.receive_message().await?.try_into()?; let state4 = state3.watch_for_lock_xmr(monero_wallet, message2).await?; tracing::info!("bob has seen that alice has locked xmr"); Ok(state4.into()) } State::State4(state4) => { transport.send_message(state4.next_message().into()).await?; tracing::info!("bob is watching for redeem_btc"); let state5 = state4.watch_for_redeem_btc(bitcoin_wallet).await?; tracing::info!("bob has seen that alice has redeemed btc"); state5.claim_xmr(monero_wallet).await?; tracing::info!("bob has claimed xmr"); Ok(state5.into()) } State::State5(state5) => Ok(state5.into()), } } #[derive(Debug)] pub enum State { State0(State0), State1(State1), State2(State2), State3(State3), State4(State4), State5(State5), } impl_try_from_parent_enum!(State0, State); impl_try_from_parent_enum!(State1, State); impl_try_from_parent_enum!(State2, State); impl_try_from_parent_enum!(State3, State); impl_try_from_parent_enum!(State4, State); impl_try_from_parent_enum!(State5, State); impl_from_child_enum!(State0, State); impl_from_child_enum!(State1, State); impl_from_child_enum!(State2, State); impl_from_child_enum!(State3, State); impl_from_child_enum!(State4, State); impl_from_child_enum!(State5, State); #[derive(Debug, Deserialize, Serialize)] pub struct State0 { b: bitcoin::SecretKey, #[serde(with = "cross_curve_dleq_scalar")] s_b: cross_curve_dleq::Scalar, v_b: monero::PrivateViewKey, #[serde(with = "bitcoin_amount")] btc: bitcoin::Amount, xmr: monero::Amount, refund_timelock: u32, punish_timelock: u32, refund_address: bitcoin::Address, } impl State0 { pub fn new( rng: &mut R, btc: bitcoin::Amount, xmr: monero::Amount, refund_timelock: u32, punish_timelock: u32, refund_address: bitcoin::Address, ) -> Self { let b = bitcoin::SecretKey::new_random(rng); let s_b = cross_curve_dleq::Scalar::random(rng); let v_b = monero::PrivateViewKey::new_random(rng); Self { b, s_b, v_b, btc, xmr, refund_timelock, punish_timelock, refund_address, } } pub fn next_message(&self, rng: &mut R) -> Message0 { let dleq_proof_s_b = cross_curve_dleq::Proof::new(rng, &self.s_b); Message0 { B: self.b.public(), S_b_monero: monero::PublicKey::from_private_key(&monero::PrivateKey { scalar: self.s_b.into_ed25519(), }), S_b_bitcoin: self.s_b.into_secp256k1().into(), dleq_proof_s_b, v_b: self.v_b, refund_address: self.refund_address.clone(), } } pub async fn receive(self, wallet: &W, msg: alice::Message0) -> anyhow::Result where W: BuildTxLockPsbt, { msg.dleq_proof_s_a.verify( msg.S_a_bitcoin.clone().into(), msg.S_a_monero .point .decompress() .ok_or_else(|| anyhow!("S_a is not a monero curve point"))?, )?; let tx_lock = bitcoin::TxLock::new(wallet, self.btc, msg.A.clone(), self.b.public()).await?; let v = msg.v_a + self.v_b; Ok(State1 { A: msg.A, b: self.b, s_b: self.s_b, S_a_monero: msg.S_a_monero, S_a_bitcoin: msg.S_a_bitcoin, v, btc: self.btc, xmr: self.xmr, refund_timelock: self.refund_timelock, punish_timelock: self.punish_timelock, refund_address: self.refund_address, redeem_address: msg.redeem_address, punish_address: msg.punish_address, tx_lock, }) } } #[derive(Debug, Deserialize, Serialize)] pub struct State1 { A: bitcoin::PublicKey, b: bitcoin::SecretKey, #[serde(with = "cross_curve_dleq_scalar")] s_b: cross_curve_dleq::Scalar, S_a_monero: monero::PublicKey, S_a_bitcoin: bitcoin::PublicKey, v: monero::PrivateViewKey, #[serde(with = "bitcoin_amount")] btc: bitcoin::Amount, xmr: monero::Amount, refund_timelock: u32, punish_timelock: u32, refund_address: bitcoin::Address, redeem_address: bitcoin::Address, punish_address: bitcoin::Address, tx_lock: bitcoin::TxLock, } impl State1 { pub fn next_message(&self) -> Message1 { Message1 { tx_lock: self.tx_lock.clone(), } } pub fn receive(self, msg: alice::Message1) -> Result { let tx_cancel = TxCancel::new( &self.tx_lock, self.refund_timelock, self.A.clone(), self.b.public(), ); let tx_refund = bitcoin::TxRefund::new(&tx_cancel, &self.refund_address); bitcoin::verify_sig(&self.A, &tx_cancel.digest(), &msg.tx_cancel_sig)?; bitcoin::verify_encsig( self.A.clone(), self.s_b.into_secp256k1().into(), &tx_refund.digest(), &msg.tx_refund_encsig, )?; Ok(State2 { A: self.A, b: self.b, s_b: self.s_b, S_a_monero: self.S_a_monero, S_a_bitcoin: self.S_a_bitcoin, v: self.v, btc: self.btc, xmr: self.xmr, refund_timelock: self.refund_timelock, punish_timelock: self.punish_timelock, refund_address: self.refund_address, redeem_address: self.redeem_address, punish_address: self.punish_address, tx_lock: self.tx_lock, tx_cancel_sig_a: msg.tx_cancel_sig, tx_refund_encsig: msg.tx_refund_encsig, }) } } #[derive(Debug, Deserialize, Serialize)] pub struct State2 { pub A: bitcoin::PublicKey, pub b: bitcoin::SecretKey, #[serde(with = "cross_curve_dleq_scalar")] pub s_b: cross_curve_dleq::Scalar, pub S_a_monero: monero::PublicKey, pub S_a_bitcoin: bitcoin::PublicKey, pub v: monero::PrivateViewKey, #[serde(with = "bitcoin_amount")] btc: bitcoin::Amount, pub xmr: monero::Amount, pub refund_timelock: u32, punish_timelock: u32, pub refund_address: bitcoin::Address, pub redeem_address: bitcoin::Address, punish_address: bitcoin::Address, pub tx_lock: bitcoin::TxLock, pub tx_cancel_sig_a: Signature, pub tx_refund_encsig: EncryptedSignature, } impl State2 { pub fn next_message(&self) -> Message2 { let tx_cancel = TxCancel::new( &self.tx_lock, self.refund_timelock, self.A.clone(), self.b.public(), ); let tx_cancel_sig = self.b.sign(tx_cancel.digest()); let tx_punish = bitcoin::TxPunish::new(&tx_cancel, &self.punish_address, self.punish_timelock); let tx_punish_sig = self.b.sign(tx_punish.digest()); Message2 { tx_punish_sig, tx_cancel_sig, } } pub async fn lock_btc(self, bitcoin_wallet: &W) -> Result where W: bitcoin::SignTxLock + bitcoin::BroadcastSignedTransaction, { let signed_tx_lock = bitcoin_wallet.sign_tx_lock(self.tx_lock.clone()).await?; tracing::info!("{}", self.tx_lock.txid()); let _ = bitcoin_wallet .broadcast_signed_transaction(signed_tx_lock) .await?; Ok(State3 { A: self.A, b: self.b, s_b: self.s_b, S_a_monero: self.S_a_monero, S_a_bitcoin: self.S_a_bitcoin, v: self.v, btc: self.btc, xmr: self.xmr, refund_timelock: self.refund_timelock, punish_timelock: self.punish_timelock, refund_address: self.refund_address, redeem_address: self.redeem_address, punish_address: self.punish_address, tx_lock: self.tx_lock, tx_cancel_sig_a: self.tx_cancel_sig_a, tx_refund_encsig: self.tx_refund_encsig, }) } } #[derive(Debug, Serialize, Deserialize)] pub struct State3 { A: bitcoin::PublicKey, b: bitcoin::SecretKey, #[serde(with = "cross_curve_dleq_scalar")] s_b: cross_curve_dleq::Scalar, S_a_monero: monero::PublicKey, S_a_bitcoin: bitcoin::PublicKey, v: monero::PrivateViewKey, #[serde(with = "bitcoin_amount")] btc: bitcoin::Amount, xmr: monero::Amount, refund_timelock: u32, punish_timelock: u32, refund_address: bitcoin::Address, redeem_address: bitcoin::Address, punish_address: bitcoin::Address, tx_lock: bitcoin::TxLock, tx_cancel_sig_a: Signature, tx_refund_encsig: EncryptedSignature, } impl State3 { pub async fn watch_for_lock_xmr(self, xmr_wallet: &W, msg: alice::Message2) -> Result where W: monero::WatchForTransfer, { let S_b_monero = monero::PublicKey::from_private_key(&monero::PrivateKey::from_scalar( self.s_b.into_ed25519(), )); let S = self.S_a_monero + S_b_monero; xmr_wallet .watch_for_transfer( S, self.v.public(), msg.tx_lock_proof, self.xmr, monero::MIN_CONFIRMATIONS, ) .await?; Ok(State4 { A: self.A, b: self.b, s_b: self.s_b, S_a_monero: self.S_a_monero, S_a_bitcoin: self.S_a_bitcoin, v: self.v, btc: self.btc, xmr: self.xmr, refund_timelock: self.refund_timelock, punish_timelock: self.punish_timelock, refund_address: self.refund_address, redeem_address: self.redeem_address, punish_address: self.punish_address, tx_lock: self.tx_lock, tx_cancel_sig_a: self.tx_cancel_sig_a, tx_refund_encsig: self.tx_refund_encsig, }) } pub async fn refund_btc( &self, bitcoin_wallet: &W, ) -> Result<()> { let tx_cancel = bitcoin::TxCancel::new( &self.tx_lock, self.refund_timelock, self.A.clone(), self.b.public(), ); let tx_refund = bitcoin::TxRefund::new(&tx_cancel, &self.refund_address); { let sig_b = self.b.sign(tx_cancel.digest()); let sig_a = self.tx_cancel_sig_a.clone(); let signed_tx_cancel = tx_cancel.clone().add_signatures( &self.tx_lock, (self.A.clone(), sig_a), (self.b.public(), sig_b), )?; let _ = bitcoin_wallet .broadcast_signed_transaction(signed_tx_cancel) .await?; } { let adaptor = Adaptor::>::default(); let sig_b = self.b.sign(tx_refund.digest()); let sig_a = adaptor .decrypt_signature(&self.s_b.into_secp256k1(), self.tx_refund_encsig.clone()); let signed_tx_refund = tx_refund.add_signatures( &tx_cancel.clone(), (self.A.clone(), sig_a), (self.b.public(), sig_b), )?; let _ = bitcoin_wallet .broadcast_signed_transaction(signed_tx_refund) .await?; } Ok(()) } pub fn tx_lock_id(&self) -> bitcoin::Txid { self.tx_lock.txid() } } #[derive(Debug, Deserialize, Serialize)] pub struct State4 { A: bitcoin::PublicKey, b: bitcoin::SecretKey, #[serde(with = "cross_curve_dleq_scalar")] s_b: cross_curve_dleq::Scalar, S_a_monero: monero::PublicKey, S_a_bitcoin: bitcoin::PublicKey, v: monero::PrivateViewKey, #[serde(with = "bitcoin_amount")] btc: bitcoin::Amount, xmr: monero::Amount, refund_timelock: u32, punish_timelock: u32, refund_address: bitcoin::Address, redeem_address: bitcoin::Address, punish_address: bitcoin::Address, tx_lock: bitcoin::TxLock, tx_cancel_sig_a: Signature, tx_refund_encsig: EncryptedSignature, } impl State4 { pub fn next_message(&self) -> Message3 { let tx_redeem = bitcoin::TxRedeem::new(&self.tx_lock, &self.redeem_address); let tx_redeem_encsig = self.b.encsign(self.S_a_bitcoin.clone(), tx_redeem.digest()); Message3 { tx_redeem_encsig } } pub async fn watch_for_redeem_btc(self, bitcoin_wallet: &W) -> Result where W: WatchForRawTransaction, { let tx_redeem = bitcoin::TxRedeem::new(&self.tx_lock, &self.redeem_address); let tx_redeem_encsig = self.b.encsign(self.S_a_bitcoin.clone(), tx_redeem.digest()); let tx_redeem_candidate = bitcoin_wallet .watch_for_raw_transaction(tx_redeem.txid()) .await; let tx_redeem_sig = tx_redeem.extract_signature_by_key(tx_redeem_candidate, self.b.public())?; let s_a = bitcoin::recover(self.S_a_bitcoin.clone(), tx_redeem_sig, tx_redeem_encsig)?; let s_a = monero::PrivateKey::from_scalar(monero::Scalar::from_bytes_mod_order(s_a.to_bytes())); Ok(State5 { A: self.A, b: self.b, s_a, s_b: self.s_b, S_a_monero: self.S_a_monero, S_a_bitcoin: self.S_a_bitcoin, v: self.v, btc: self.btc, xmr: self.xmr, refund_timelock: self.refund_timelock, punish_timelock: self.punish_timelock, refund_address: self.refund_address, redeem_address: self.redeem_address, punish_address: self.punish_address, tx_lock: self.tx_lock, tx_refund_encsig: self.tx_refund_encsig, tx_cancel_sig: self.tx_cancel_sig_a, }) } } #[derive(Debug, Clone, Deserialize, Serialize)] pub struct State5 { A: bitcoin::PublicKey, b: bitcoin::SecretKey, #[serde(with = "monero_private_key")] s_a: monero::PrivateKey, #[serde(with = "cross_curve_dleq_scalar")] s_b: cross_curve_dleq::Scalar, S_a_monero: monero::PublicKey, S_a_bitcoin: bitcoin::PublicKey, v: monero::PrivateViewKey, #[serde(with = "bitcoin_amount")] btc: bitcoin::Amount, xmr: monero::Amount, refund_timelock: u32, punish_timelock: u32, refund_address: bitcoin::Address, redeem_address: bitcoin::Address, punish_address: bitcoin::Address, tx_lock: bitcoin::TxLock, tx_refund_encsig: EncryptedSignature, tx_cancel_sig: Signature, } impl State5 { pub async fn claim_xmr(&self, monero_wallet: &W) -> Result<()> where W: monero::CreateWalletForOutput, { let s_b = monero::PrivateKey { scalar: self.s_b.into_ed25519(), }; let s = self.s_a + s_b; // NOTE: This actually generates and opens a new wallet, closing the currently // open one. monero_wallet .create_and_load_wallet_for_output(s, self.v) .await?; Ok(()) } pub fn tx_lock_id(&self) -> bitcoin::Txid { self.tx_lock.txid() } }