#![allow(non_snake_case)] #![allow(non_upper_case_globals)] #![allow(non_camel_case_types)] use anyhow::{bail, Result}; use curve25519_dalek::constants::ED25519_BASEPOINT_POINT; use curve25519_dalek::edwards::{CompressedEdwardsY, EdwardsPoint}; use curve25519_dalek::scalar::Scalar; use hash_edwards_to_edwards::hash_point_to_point; use rand::{CryptoRng, Rng}; use std::convert::TryInto; use tiny_keccak::Hasher; mod ring; pub const RING_SIZE: usize = 11; const HASH_KEY_CLSAG_AGG_0: &str = "CLSAG_agg_0"; const HASH_KEY_CLSAG_AGG_1: &str = "CLSAG_agg_1"; const HASH_KEY_CLSAG_ROUND: &str = "CLSAG_round"; // for every iteration we compute: // c_p = h_prev * mu_P; and // c_c = h_prev * mu_C. // // L_i = s_i * G + c_p * pk_i + c_c * (commitment_i - pseudoutcommitment) // R_i = s_i * H_p_pk_i + c_p * I + c_c * (z * hash_to_point(signing pk)) // // h = keccak256("CLSAG_round" || ring // ring of commitments || pseudooutput commitment || msg || L_i || R_i) struct AggregationHashes { mu_P: Scalar, mu_C: Scalar, } impl AggregationHashes { pub fn new( ring: [EdwardsPoint; RING_SIZE], commitment_ring: [EdwardsPoint; RING_SIZE], I: EdwardsPoint, z: Scalar, H_p_pk: EdwardsPoint, pseudo_output_commitment: EdwardsPoint, ) -> Self { let z_key_image = z * H_p_pk; let ring = ring .iter() .flat_map(|pk| pk.compress().as_bytes().to_vec()) .collect::>(); let commitment_ring = commitment_ring .iter() .flat_map(|pk| pk.compress().as_bytes().to_vec()) .collect::>(); let I = I.compress(); let z_key_image = z_key_image.compress(); let pseudo_output_commitment = pseudo_output_commitment.compress(); let mu_P = Self::hash( HASH_KEY_CLSAG_AGG_0, &ring, &commitment_ring, &I, &z_key_image, &pseudo_output_commitment, ); let mu_C = Self::hash( HASH_KEY_CLSAG_AGG_1, &ring, &commitment_ring, &I, &z_key_image, &pseudo_output_commitment, ); Self { mu_P, mu_C } } // aggregation hashes: // mu_{P, C} = // keccak256("CLSAG_agg_{0, 1}" || // ring || ring of commitments || I || z * hash_to_point(signing pk) || // pseudooutput commitment) // // where z = blinding of real commitment - blinding of pseudooutput commitment. fn hash( domain_prefix: &str, ring: &[u8], commitment_ring: &[u8], I: &CompressedEdwardsY, z_key_image: &CompressedEdwardsY, pseudo_output_commitment: &CompressedEdwardsY, ) -> Scalar { let mut hasher = tiny_keccak::Keccak::v256(); hasher.update(domain_prefix.as_bytes()); hasher.update(ring); hasher.update(commitment_ring); hasher.update(I.as_bytes()); hasher.update(z_key_image.as_bytes()); hasher.update(pseudo_output_commitment.as_bytes()); let mut hash = [0u8; 32]; hasher.finalize(&mut hash); Scalar::from_bytes_mod_order(hash) } } fn challenge( prefix: &[u8], s_i: Scalar, pk_i: EdwardsPoint, h_prev: Scalar, I: EdwardsPoint, ) -> Result { let L_i = s_i * ED25519_BASEPOINT_POINT + h_prev * pk_i; let H_p_pk_i = hash_point_to_point(pk_i); let R_i = s_i * H_p_pk_i + h_prev * I; let mut hasher = tiny_keccak::Keccak::v256(); hasher.update(prefix); hasher.update(&L_i.compress().as_bytes().to_vec()); hasher.update(&R_i.compress().as_bytes().to_vec()); let mut output = [0u8; 32]; hasher.finalize(&mut output); Ok(Scalar::from_bytes_mod_order(output)) } // h_0 = keccak256("CLSAG_round" || ring || // ring of commitments || pseudooutput commitment || msg || alpha * G || // alpha * hash_to_point(signing pk)) // // where alpha is random // TODO: Create ring newtype fn clsag_round_hash_prefix( ring: &[u8], commitment_ring: &[u8], pseudo_output_commitment: &EdwardsPoint, msg: &[u8], ) -> Vec { // TODO: Set capacity let mut prefix = Vec::new(); prefix.extend(HASH_KEY_CLSAG_ROUND.as_bytes()); prefix.extend(ring); prefix.extend(commitment_ring); prefix.extend(pseudo_output_commitment.compress().as_bytes()); prefix.extend(msg); prefix } #[allow(clippy::too_many_arguments)] fn final_challenge( fake_responses: [Scalar; RING_SIZE - 1], ring: [EdwardsPoint; RING_SIZE], T_a: EdwardsPoint, T_b: EdwardsPoint, R_a: EdwardsPoint, I_hat_a: EdwardsPoint, I_hat_b: EdwardsPoint, R_prime_a: EdwardsPoint, I: EdwardsPoint, msg: &[u8], ) -> Result<(Scalar, Scalar)> { let ring_concat = ring .iter() .flat_map(|pk| pk.compress().as_bytes().to_vec()) .collect::>(); let prefix = clsag_round_hash_prefix(&ring_concat, todo!(), todo!(), msg); let h_0 = { let mut keccak = tiny_keccak::Keccak::v256(); keccak.update(&prefix); keccak.update((T_a + T_b + R_a).compress().as_bytes()); keccak.update((I_hat_a + I_hat_b + R_prime_a).compress().as_bytes()); let mut output = [0u8; 64]; keccak.finalize(&mut output); Scalar::from_bytes_mod_order_wide(&output) }; let ring_concat = ring .iter() .flat_map(|pk| pk.compress().as_bytes().to_vec()) .collect::>(); let h_last = fake_responses .iter() .enumerate() .fold(h_0, |h_prev, (i, s_i)| { let pk_i = ring[i + 1]; // TODO: Do not unwrap here challenge(&prefix, *s_i, pk_i, h_prev, I).unwrap() }); Ok((h_last, h_0)) } pub struct AdaptorSignature { s_0_a: Scalar, s_0_b: Scalar, fake_responses: [Scalar; RING_SIZE - 1], h_0: Scalar, /// Key image of the real key in the ring. I: EdwardsPoint, } impl AdaptorSignature { pub fn adapt(self, y: Scalar) -> Signature { let r_last = self.s_0_a + self.s_0_b + y; let responses = self .fake_responses .iter() .chain([r_last].iter()) .copied() .collect::>() .try_into() .expect("correct response size"); Signature { responses, h_0: self.h_0, I: self.I, } } } pub struct Signature { pub responses: [Scalar; RING_SIZE], pub h_0: Scalar, /// Key image of the real key in the ring. pub I: EdwardsPoint, } impl Signature { #[cfg(test)] fn verify(&self, ring: [EdwardsPoint; RING_SIZE], msg: &[u8; 32]) -> Result { let ring_concat = ring .iter() .flat_map(|pk| pk.compress().as_bytes().to_vec()) .collect::>(); let mut h = self.h_0; for (i, s_i) in self.responses.iter().enumerate() { let pk_i = ring[(i + 1) % RING_SIZE]; h = challenge( &clsag_round_hash_prefix(&ring_concat, todo!(), todo!(), msg), *s_i, pk_i, h, self.I, )?; } Ok(h == self.h_0) } } impl From for monero::util::ringct::Clsag { fn from(from: Signature) -> Self { Self { s: from .responses .iter() .map(|s| monero::util::ringct::Key { key: s.to_bytes() }) .collect(), c1: monero::util::ringct::Key { key: from.h_0.to_bytes(), }, D: monero::util::ringct::Key { key: from.I.compress().to_bytes(), }, } } } pub struct Alice0 { // secret index is always 0 ring: [EdwardsPoint; RING_SIZE], fake_responses: [Scalar; RING_SIZE - 1], msg: [u8; 32], // encryption key R_a: EdwardsPoint, // R'a = r_a*H_p(p_k) where p_k is the signing public key R_prime_a: EdwardsPoint, // this is not s_a cos of something to with one-time-address?? s_prime_a: Scalar, // secret value: alpha_a: Scalar, H_p_pk: EdwardsPoint, I_a: EdwardsPoint, I_hat_a: EdwardsPoint, T_a: EdwardsPoint, } impl Alice0 { pub fn new( ring: [EdwardsPoint; RING_SIZE], msg: [u8; 32], R_a: EdwardsPoint, R_prime_a: EdwardsPoint, s_prime_a: Scalar, rng: &mut (impl Rng + CryptoRng), ) -> Result { let mut fake_responses = [Scalar::zero(); RING_SIZE - 1]; for response in fake_responses.iter_mut().take(RING_SIZE - 1) { *response = Scalar::random(rng); } let alpha_a = Scalar::random(rng); let p_k = ring[0]; let H_p_pk = hash_point_to_point(p_k); let I_a = s_prime_a * H_p_pk; let I_hat_a = alpha_a * H_p_pk; let T_a = alpha_a * ED25519_BASEPOINT_POINT; Ok(Alice0 { ring, fake_responses, msg, R_a, R_prime_a, s_prime_a, alpha_a, H_p_pk, I_a, I_hat_a, T_a, }) } pub fn next_message(&self, rng: &mut (impl Rng + CryptoRng)) -> Message0 { Message0 { pi_a: DleqProof::new( ED25519_BASEPOINT_POINT, self.T_a, self.H_p_pk, self.I_hat_a, self.alpha_a, rng, ), c_a: Commitment::new(self.fake_responses, self.I_a, self.I_hat_a, self.T_a), } } pub fn receive(self, msg: Message1) -> Result { msg.pi_b .verify(ED25519_BASEPOINT_POINT, msg.T_b, self.H_p_pk, msg.I_hat_b)?; let (h_last, h_0) = final_challenge( self.fake_responses, self.ring, self.T_a, msg.T_b, self.R_a, self.I_hat_a, msg.I_hat_b, self.R_prime_a, self.I_a + msg.I_b, &self.msg, )?; // TODO: alpha_a - h_last * (mu_P * s_prime_a + mu_C * z) let s_0_a = self.alpha_a - h_last * self.s_prime_a; Ok(Alice1 { fake_responses: self.fake_responses, h_0, I_b: msg.I_b, s_0_a, I_a: self.I_a, I_hat_a: self.I_hat_a, T_a: self.T_a, }) } } pub struct Alice1 { fake_responses: [Scalar; RING_SIZE - 1], I_a: EdwardsPoint, I_hat_a: EdwardsPoint, T_a: EdwardsPoint, h_0: Scalar, I_b: EdwardsPoint, s_0_a: Scalar, } impl Alice1 { pub fn next_message(&self) -> Message2 { Message2 { d_a: Opening::new(self.fake_responses, self.I_a, self.I_hat_a, self.T_a), s_0_a: self.s_0_a, } } pub fn receive(self, msg: Message3) -> Alice2 { let adaptor_sig = AdaptorSignature { s_0_a: self.s_0_a, s_0_b: msg.s_0_b, fake_responses: self.fake_responses, h_0: self.h_0, I: self.I_a + self.I_b, }; Alice2 { adaptor_sig } } } pub struct Alice2 { pub adaptor_sig: AdaptorSignature, } pub struct Bob0 { // secret index is always 0 ring: [EdwardsPoint; RING_SIZE], msg: [u8; 32], // encryption key R_a: EdwardsPoint, // R'a = r_a*H_p(p_k) where p_k is the signing public key R_prime_a: EdwardsPoint, s_b: Scalar, // secret value: alpha_b: Scalar, H_p_pk: EdwardsPoint, I_b: EdwardsPoint, I_hat_b: EdwardsPoint, T_b: EdwardsPoint, } impl Bob0 { pub fn new( ring: [EdwardsPoint; RING_SIZE], msg: [u8; 32], R_a: EdwardsPoint, R_prime_a: EdwardsPoint, s_b: Scalar, rng: &mut (impl Rng + CryptoRng), ) -> Result { let alpha_b = Scalar::random(rng); let p_k = ring[0]; let H_p_pk = hash_point_to_point(p_k); let I_b = s_b * H_p_pk; let I_hat_b = alpha_b * H_p_pk; let T_b = alpha_b * ED25519_BASEPOINT_POINT; Ok(Bob0 { ring, msg, R_a, R_prime_a, s_b, alpha_b, H_p_pk, I_b, I_hat_b, T_b, }) } pub fn receive(self, msg: Message0) -> Bob1 { Bob1 { ring: self.ring, msg: self.msg, R_a: self.R_a, R_prime_a: self.R_prime_a, s_b: self.s_b, alpha_b: self.alpha_b, H_p_pk: self.H_p_pk, I_b: self.I_b, I_hat_b: self.I_hat_b, T_b: self.T_b, pi_a: msg.pi_a, c_a: msg.c_a, } } } pub struct Bob1 { // secret index is always 0 ring: [EdwardsPoint; RING_SIZE], msg: [u8; 32], // encryption key R_a: EdwardsPoint, // R'a = r_a*H_p(p_k) where p_k is the signing public key R_prime_a: EdwardsPoint, s_b: Scalar, // secret value: alpha_b: Scalar, H_p_pk: EdwardsPoint, I_b: EdwardsPoint, I_hat_b: EdwardsPoint, T_b: EdwardsPoint, pi_a: DleqProof, c_a: Commitment, } impl Bob1 { pub fn next_message(&self, rng: &mut (impl Rng + CryptoRng)) -> Message1 { Message1 { I_b: self.I_b, T_b: self.T_b, I_hat_b: self.I_hat_b, pi_b: DleqProof::new( ED25519_BASEPOINT_POINT, self.T_b, self.H_p_pk, self.I_hat_b, self.alpha_b, rng, ), } } pub fn receive(self, msg: Message2) -> Result { let (fake_responses, I_a, I_hat_a, T_a) = msg.d_a.open(self.c_a)?; self.pi_a .verify(ED25519_BASEPOINT_POINT, T_a, self.H_p_pk, I_hat_a)?; let (h_last, h_0) = final_challenge( fake_responses, self.ring, T_a, self.T_b, self.R_a, I_hat_a, self.I_hat_b, self.R_prime_a, I_a + self.I_b, &self.msg, )?; // TODO: alpha_b - h_last * (mu_P * s_b + mu_C * z); let s_0_b = self.alpha_b - h_last * self.s_b; let adaptor_sig = AdaptorSignature { s_0_a: msg.s_0_a, s_0_b, fake_responses, h_0, I: I_a + self.I_b, }; Ok(Bob2 { s_0_b, adaptor_sig }) } } pub struct Bob2 { s_0_b: Scalar, pub adaptor_sig: AdaptorSignature, } impl Bob2 { pub fn next_message(&self) -> Message3 { Message3 { s_0_b: self.s_0_b } } } struct DleqProof { s: Scalar, c: Scalar, } impl DleqProof { fn new( G: EdwardsPoint, xG: EdwardsPoint, H: EdwardsPoint, xH: EdwardsPoint, x: Scalar, rng: &mut (impl Rng + CryptoRng), ) -> Self { let r = Scalar::random(rng); let rG = r * G; let rH = r * H; let mut keccak = tiny_keccak::Keccak::v256(); keccak.update(G.compress().as_bytes()); keccak.update(xG.compress().as_bytes()); keccak.update(H.compress().as_bytes()); keccak.update(xH.compress().as_bytes()); keccak.update(rG.compress().as_bytes()); keccak.update(rH.compress().as_bytes()); let mut output = [0u8; 32]; keccak.finalize(&mut output); let c = Scalar::from_bytes_mod_order(output); let s = r + c * x; Self { s, c } } fn verify( &self, G: EdwardsPoint, xG: EdwardsPoint, H: EdwardsPoint, xH: EdwardsPoint, ) -> Result<()> { let s = self.s; let c = self.c; let rG = (s * G) + (-c * xG); let rH = (s * H) + (-c * xH); let mut keccak = tiny_keccak::Keccak::v256(); keccak.update(G.compress().as_bytes()); keccak.update(xG.compress().as_bytes()); keccak.update(H.compress().as_bytes()); keccak.update(xH.compress().as_bytes()); keccak.update(rG.compress().as_bytes()); keccak.update(rH.compress().as_bytes()); let mut output = [0u8; 32]; keccak.finalize(&mut output); let c_prime = Scalar::from_bytes_mod_order(output); if c != c_prime { bail!("invalid DLEQ proof") } Ok(()) } } #[derive(PartialEq)] struct Commitment([u8; 32]); impl Commitment { fn new( fake_responses: [Scalar; RING_SIZE - 1], I_a: EdwardsPoint, I_hat_a: EdwardsPoint, T_a: EdwardsPoint, ) -> Self { let fake_responses = fake_responses .iter() .flat_map(|r| r.as_bytes().to_vec()) .collect::>(); let mut keccak = tiny_keccak::Keccak::v256(); keccak.update(&fake_responses); keccak.update(I_a.compress().as_bytes()); keccak.update(I_hat_a.compress().as_bytes()); keccak.update(T_a.compress().as_bytes()); let mut output = [0u8; 32]; keccak.finalize(&mut output); Self(output) } } struct Opening { fake_responses: [Scalar; RING_SIZE - 1], I_a: EdwardsPoint, I_hat_a: EdwardsPoint, T_a: EdwardsPoint, } impl Opening { fn new( fake_responses: [Scalar; RING_SIZE - 1], I_a: EdwardsPoint, I_hat_a: EdwardsPoint, T_a: EdwardsPoint, ) -> Self { Self { fake_responses, I_a, I_hat_a, T_a, } } fn open( self, commitment: Commitment, ) -> Result<( [Scalar; RING_SIZE - 1], EdwardsPoint, EdwardsPoint, EdwardsPoint, )> { let self_commitment = Commitment::new(self.fake_responses, self.I_a, self.I_hat_a, self.T_a); if self_commitment == commitment { Ok((self.fake_responses, self.I_a, self.I_hat_a, self.T_a)) } else { bail!("opening does not match commitment") } } } // Alice Sends this to Bob pub struct Message0 { c_a: Commitment, pi_a: DleqProof, } // Bob sends this to ALice pub struct Message1 { I_b: EdwardsPoint, T_b: EdwardsPoint, I_hat_b: EdwardsPoint, pi_b: DleqProof, } // Alice sends this to Bob pub struct Message2 { d_a: Opening, s_0_a: Scalar, } // Bob sends this to Alice #[derive(Clone, Copy)] pub struct Message3 { s_0_b: Scalar, } #[cfg(test)] mod tests { use super::*; use rand::rngs::OsRng; #[test] fn sign_and_verify_success() { let msg_to_sign = b"hello world, monero is amazing!!"; let s_prime_a = Scalar::random(&mut OsRng); let s_b = Scalar::random(&mut OsRng); let pk = (s_prime_a + s_b) * ED25519_BASEPOINT_POINT; let (r_a, R_a, R_prime_a) = { let r_a = Scalar::random(&mut OsRng); let R_a = r_a * ED25519_BASEPOINT_POINT; let pk_hashed_to_point = hash_point_to_point(pk); let R_prime_a = r_a * pk_hashed_to_point; (r_a, R_a, R_prime_a) }; let mut ring = [EdwardsPoint::default(); RING_SIZE]; ring[0] = pk; ring[1..].fill_with(|| { let x = Scalar::random(&mut OsRng); x * ED25519_BASEPOINT_POINT }); let alice = Alice0::new(ring, *msg_to_sign, R_a, R_prime_a, s_prime_a, &mut OsRng).unwrap(); let bob = Bob0::new(ring, *msg_to_sign, R_a, R_prime_a, s_b, &mut OsRng).unwrap(); let msg = alice.next_message(&mut OsRng); let bob = bob.receive(msg); let msg = bob.next_message(&mut OsRng); let alice = alice.receive(msg).unwrap(); let msg = alice.next_message(); let bob = bob.receive(msg).unwrap(); let msg = bob.next_message(); let alice = alice.receive(msg); let sig = alice.adaptor_sig.adapt(r_a); assert!(sig.verify(ring, msg_to_sign).unwrap()); } }