By default the finality confirmations of the network's `env::Config` will be applied and no finality confirmations will be persisted on disk in the config file.
It is however possible to set finality confirmations in the config file for bitcoin and monero for power users at their own risk.
If set the defaults will be overwritten with the parameter from the config file upon startup.
To run the ASB on testnet, one actively has to provide the `--testnet` flag.
Mainnet and testnet data and config are separated into sub-folders, i.e. `{data/config-dir}/asb/testnet` and `{data-dir}/asb/mainnet`.
The initial setup is also per network. If (default) config for the network cannot be found the initial setup is triggered.
Startup includes network check to ensure the bitcoin/monero network in config file is the same as the one in the `env::Config`.
Note: Wallet initialization is done with the network set in the `env::Config`, the network saved in the config file is just to indicate what network the config file is for.
Introduces a minimum buy Bitcoin amount similar to the maximum amount already present.
For the CLI the minimum amount is enforced by waiting until at least the minimum is available as max-giveable amount.
Max-buy and spread is not something that one would configure on every run.
More convenient to keep this in the config.
The max-buy Bitcoin value was adapted to `0.02` which is more reasonable for mainnet.
Activated feature `serde-float` to serialize the spread (Decimal) as float instead of string.
```
...
[maker]
max_buy_btc = 0.02
ask_spread = 0.02
```
Adds `cancel`, `refund`, `punish`, `redeem` and `safely-abort` commands to the ASB that can be used to trigger the specific scenario for the swap by ID.
`asb --help` :
(...)
SUBCOMMANDS:
balance Prints the Bitcoin and Monero balance. Requires the monero-wallet-rpc to be running.
help Prints this message or the help of the given subcommand(s)
history Prints swap-id and the state of each swap ever made.
start Main command to run the ASB.
withdraw-btc Allows withdrawing BTC from the internal Bitcoin wallet.
Resume-only is a maintenance mode where no swaps are accepted but unfinished swaps are resumed.
This is achieve by ignoring incoming spot-price requests (that would lead to execution setup) in the event-loop.
Using the same default directory as data-/config-dir has caused unwanted side effects when running both applications on the same machine.
Use these directory names:
- ASB: xmr-btc-swap/asb
- CLI: xmr-btc-swap/cli
Since the functionality is now application specific the respective functions were moved into the appropriate module of the application.
Using the same default directory as data-/config-dir has caused unwanted side effects when running both applications on the same machine.
Use these directory names:
- ASB: xmr-btc-swap-asb
- CLI: xmr-btc-swap-cli
Since the functionality is now application specific the respective functions were moved into the appropriate module of the application.
This PR does a few things.
* It adds a TorTransport which either dials through Tor's socks5 proxy or via clearnet.
* It enables ASB to register hidden services for each network it is listening on. We assume that we only care about different ports and re-use the same onion-address for all of them. The ASB requires to have access to Tor's control port.
* It adds support to dial through a local Tor socks5 proxy. We assume that Tor is always available on localhost. Swap cli only requires Tor to be running so that it can send messages via Tor's socks5 proxy.
* It adds a new e2e test which swaps through Tor. For this we assume that Tor is currently running on localhost. All other tests are running via clear net.
- Listen on both tcp and websockets as default
- Listening addresses in config as array
- Configure fallback transport using `or_transport` - if listening on a given address fails on WS, we fall back to TCP.
We achieve our optimizations in three ways:
1. Batching calls instead of making them individually.
To get access to the batch calls, we replace all our
calls to the HTTP interface with RPC calls.
2. Never directly make network calls based on function
calls on the wallet.
Instead, inquiring about the status of a script always
just returns information based on local data. With every
call, we check when we last refreshed the local data and
do so if the data is considered to be too old. This
interval is configurable.
3. Use electrum's notification feature to get updated
with the latest blockheight.
Co-authored-by: Thomas Eizinger <thomas@eizinger.io>
Co-authored-by: Rishab Sharma <rishflab@hotmail.com>
Instead of leaking the tokio::sync:⌚:Receiver type in our
return value, we create a newtype that implements the desired
interface. This allows us to get rid of the `RateService` structs
and instead implement `LatestRate` directly on top of this struct.
Given that `LatestRate` is only used within the event_loop module,
we move the definition of this type into there.
This reduces the overall amount of LoC that imports take up in our
codebase by almost 100.
It also makes merge-conflicts less likely because there is less
grouping together of imports that may lead to layout changes which
in turn can cause merge conflicts.
This allows us to use .context instead of .map_err when calling
`latest_rate()`. For the static rate module, we simply fill in
`Infallible` which is actually better suited because it describes
that we are never using this error.
Note that because we are using `watch` channel, only a reference to the
channel value can be returned.
Hence, using custom Error that can be cloned to be able to
pass `Result` through the channel.