Use hash_point_to_point from external repo

This commit is contained in:
Lucas Soriano del Pino 2021-04-22 14:05:25 +10:00
parent cfed03083c
commit ccb808bdf7
No known key found for this signature in database
GPG Key ID: EE611E973A1530E7
12 changed files with 26 additions and 5669 deletions

36
Cargo.lock generated
View File

@ -1371,6 +1371,16 @@ version = "1.7.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "62aca2aba2d62b4a7f5b33f3712cb1b0692779a56fb510499d5c0aa594daeaf3"
[[package]]
name = "hash_edwards_to_edwards"
version = "0.1.0"
source = "git+https://github.com/comit-network/hash_edwards_to_edwards#b994b2bee919bf8abeb6116c9ec1288251b66abc"
dependencies = [
"bindgen",
"cc",
"curve25519-dalek",
]
[[package]]
name = "hashbrown"
version = "0.9.1"
@ -2202,16 +2212,11 @@ dependencies = [
name = "monero-adaptor"
version = "0.1.0"
dependencies = [
"anyhow",
"bindgen",
"cc",
"curve25519-dalek",
"hex 0.4.3",
"monero",
"nazgul",
"rand 0.7.3",
"tiny-keccak",
"tokio 1.4.0",
"anyhow",
"curve25519-dalek",
"hash_edwards_to_edwards",
"rand 0.7.3",
"tiny-keccak",
]
[[package]]
@ -2302,17 +2307,6 @@ dependencies = [
"unsigned-varint 0.7.0",
]
[[package]]
name = "nazgul"
version = "0.1.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9dff2f512a99611eb14f9bbdcc69e900c93952c4cc94656d2278ea5aa294cec2"
dependencies = [
"curve25519-dalek",
"digest 0.9.0",
"rand_core 0.5.1",
]
[[package]]
name = "nohash-hasher"
version = "0.2.0"

View File

@ -5,15 +5,8 @@ authors = ["CoBloX Team <team@coblox.tech>"]
edition = "2018"
[dependencies]
monero = "0.11"
anyhow = "1"
hex = "0.4"
tokio = { version = "1", features = ["rt-multi-thread", "time", "macros", "sync", "process", "fs"] }
curve25519-dalek = "3"
rand = "0.7"
nazgul = "0.1"
tiny-keccak = "2"
[build-dependencies]
bindgen = "0.58"
cc = "1"
tiny-keccak = { version = "2", features = ["keccak"] }
hash_edwards_to_edwards = { git = "https://github.com/comit-network/hash_edwards_to_edwards" }

View File

@ -1,15 +0,0 @@
extern crate bindgen;
fn main() {
// Tell cargo to invalidate the built crate whenever the wrapper changes
println!("cargo:rerun-if-changed=depend/hash");
let mut base_config = cc::Build::new();
base_config.include("depend/hash/include");
base_config.file("depend/hash/hash.c");
base_config.file("depend/hash/crypto-ops.c");
base_config.file("depend/hash/keccak.c");
base_config.compile("hash");
println!("cargo:rustc-link-lib=static=hash");
}

File diff suppressed because it is too large Load Diff

View File

@ -1,21 +0,0 @@
#include <stdint.h>
#include "include/keccak.h"
#include "include/crypto-ops.h"
void hash_to_scalar(const uint8_t *in, uint8_t *md) {
keccak(in, 32, md, 32);
sc_reduce32(md);
}
// Hash a key to p3 representation
void hash_to_p3(const uint8_t *in, ge_p3 *hash8_p3) {
uint8_t md[32];
ge_p2 hash_p2;
ge_p1p1 hash8_p1p1;
keccak(in, 32, md, 32);
ge_fromfe_frombytes_vartime(&hash_p2, md);
ge_mul8(&hash8_p1p1, &hash_p2);
ge_p1p1_to_p3(hash8_p3, &hash8_p1p1);
}

View File

@ -1,165 +0,0 @@
// Copyright (c) 2014-2020, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#pragma once
/* From fe.h */
typedef int32_t fe[10];
/* From ge.h */
typedef struct {
fe X;
fe Y;
fe Z;
} ge_p2;
typedef struct {
fe X;
fe Y;
fe Z;
fe T;
} ge_p3;
typedef struct {
fe X;
fe Y;
fe Z;
fe T;
} ge_p1p1;
typedef struct {
fe yplusx;
fe yminusx;
fe xy2d;
} ge_precomp;
typedef struct {
fe YplusX;
fe YminusX;
fe Z;
fe T2d;
} ge_cached;
/* From ge_add.c */
void ge_add(ge_p1p1 *, const ge_p3 *, const ge_cached *);
/* From ge_double_scalarmult.c, modified */
typedef ge_cached ge_dsmp[8];
extern const ge_precomp ge_Bi[8];
void ge_dsm_precomp(ge_dsmp r, const ge_p3 *s);
void ge_double_scalarmult_base_vartime(ge_p2 *, const unsigned char *, const ge_p3 *, const unsigned char *);
void ge_triple_scalarmult_base_vartime(ge_p2 *, const unsigned char *, const unsigned char *, const ge_dsmp, const unsigned char *, const ge_dsmp);
void ge_double_scalarmult_base_vartime_p3(ge_p3 *, const unsigned char *, const ge_p3 *, const unsigned char *);
/* From ge_frombytes.c, modified */
extern const fe fe_sqrtm1;
extern const fe fe_d;
int ge_frombytes_vartime(ge_p3 *, const unsigned char *);
/* From ge_p1p1_to_p2.c */
void ge_p1p1_to_p2(ge_p2 *, const ge_p1p1 *);
/* From ge_p1p1_to_p3.c */
void ge_p1p1_to_p3(ge_p3 *, const ge_p1p1 *);
/* From ge_p2_dbl.c */
void ge_p2_dbl(ge_p1p1 *, const ge_p2 *);
/* From ge_p3_to_cached.c */
extern const fe fe_d2;
void ge_p3_to_cached(ge_cached *, const ge_p3 *);
/* From ge_p3_to_p2.c */
void ge_p3_to_p2(ge_p2 *, const ge_p3 *);
/* From ge_p3_tobytes.c */
void ge_p3_tobytes(unsigned char *, const ge_p3 *);
/* From ge_scalarmult_base.c */
extern const ge_precomp ge_base[32][8];
void ge_scalarmult_base(ge_p3 *, const unsigned char *);
/* From ge_tobytes.c */
void ge_tobytes(unsigned char *, const ge_p2 *);
/* From sc_reduce.c */
void sc_reduce(unsigned char *);
/* New code */
void ge_scalarmult(ge_p2 *, const unsigned char *, const ge_p3 *);
void ge_scalarmult_p3(ge_p3 *, const unsigned char *, const ge_p3 *);
void ge_double_scalarmult_precomp_vartime(ge_p2 *, const unsigned char *, const ge_p3 *, const unsigned char *, const ge_dsmp);
void ge_triple_scalarmult_precomp_vartime(ge_p2 *, const unsigned char *, const ge_dsmp, const unsigned char *, const ge_dsmp, const unsigned char *, const ge_dsmp);
void ge_double_scalarmult_precomp_vartime2(ge_p2 *, const unsigned char *, const ge_dsmp, const unsigned char *, const ge_dsmp);
void ge_double_scalarmult_precomp_vartime2_p3(ge_p3 *, const unsigned char *, const ge_dsmp, const unsigned char *, const ge_dsmp);
void ge_mul8(ge_p1p1 *, const ge_p2 *);
extern const fe fe_ma2;
extern const fe fe_ma;
extern const fe fe_fffb1;
extern const fe fe_fffb2;
extern const fe fe_fffb3;
extern const fe fe_fffb4;
extern const ge_p3 ge_p3_identity;
extern const ge_p3 ge_p3_H;
void ge_fromfe_frombytes_vartime(ge_p2 *, const unsigned char *);
void sc_0(unsigned char *);
void sc_reduce32(unsigned char *);
void sc_add(unsigned char *, const unsigned char *, const unsigned char *);
void sc_sub(unsigned char *, const unsigned char *, const unsigned char *);
void sc_mulsub(unsigned char *, const unsigned char *, const unsigned char *, const unsigned char *);
void sc_mul(unsigned char *, const unsigned char *, const unsigned char *);
void sc_muladd(unsigned char *s, const unsigned char *a, const unsigned char *b, const unsigned char *c);
int sc_check(const unsigned char *);
int sc_isnonzero(const unsigned char *); /* Doesn't normalize */
// internal
uint64_t load_3(const unsigned char *in);
uint64_t load_4(const unsigned char *in);
void ge_sub(ge_p1p1 *r, const ge_p3 *p, const ge_cached *q);
void fe_add(fe h, const fe f, const fe g);
void fe_tobytes(unsigned char *, const fe);
void fe_invert(fe out, const fe z);
int ge_p3_is_point_at_infinity(const ge_p3 *p);

View File

@ -1,97 +0,0 @@
// Copyright (c) 2014-2020, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#pragma once
#if !defined(__cplusplus)
#include <assert.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include "int-util.h"
#include "warnings.h"
static inline void *padd(void *p, size_t i) {
return (char *) p + i;
}
static inline const void *cpadd(const void *p, size_t i) {
return (const char *) p + i;
}
PUSH_WARNINGS
DISABLE_VS_WARNINGS(4267)
static_assert(sizeof(size_t) == 4 || sizeof(size_t) == 8, "size_t must be 4 or 8 bytes long");
static inline void place_length(uint8_t *buffer, size_t bufsize, size_t length) {
if (sizeof(size_t) == 4) {
*(uint32_t *) padd(buffer, bufsize - 4) = swap32be(length);
} else {
*(uint64_t *) padd(buffer, bufsize - 8) = swap64be(length);
}
}
POP_WARNINGS
#pragma pack(push, 1)
union hash_state {
uint8_t b[200];
uint64_t w[25];
};
#pragma pack(pop)
static_assert(sizeof(union hash_state) == 200, "Invalid structure size");
void hash_permutation(union hash_state *state);
void hash_process(union hash_state *state, const uint8_t *buf, size_t count);
#endif
enum {
HASH_SIZE = 32,
HASH_DATA_AREA = 136
};
void cn_fast_hash(const void *data, size_t length, char *hash);
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height);
void hash_extra_blake(const void *data, size_t length, char *hash);
void hash_extra_groestl(const void *data, size_t length, char *hash);
void hash_extra_jh(const void *data, size_t length, char *hash);
void hash_extra_skein(const void *data, size_t length, char *hash);
void tree_hash(const char (*hashes)[HASH_SIZE], size_t count, char *root_hash);
#define RX_BLOCK_VERSION 12
void rx_slow_hash_allocate_state(void);
void rx_slow_hash_free_state(void);
uint64_t rx_seedheight(const uint64_t height);
void rx_seedheights(const uint64_t height, uint64_t *seed_height, uint64_t *next_height);
void rx_slow_hash(const uint64_t mainheight, const uint64_t seedheight, const char *seedhash, const void *data, size_t length, char *hash, int miners, int is_alt);
void rx_reorg(const uint64_t split_height);

View File

@ -1,320 +0,0 @@
// Copyright (c) 2014-2020, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#pragma once
#include <assert.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#ifndef _MSC_VER
#include <sys/param.h>
#endif
#if defined(__ANDROID__)
#include <byteswap.h>
#endif
#if defined(__sun) && defined(__SVR4)
#include <endian.h>
#endif
#if defined(_MSC_VER)
#include <stdlib.h>
static inline uint32_t rol32(uint32_t x, int r) {
static_assert(sizeof(uint32_t) == sizeof(unsigned int), "this code assumes 32-bit integers");
return _rotl(x, r);
}
static inline uint64_t rol64(uint64_t x, int r) {
return _rotl64(x, r);
}
#else
static inline uint32_t rol32(uint32_t x, int r) {
return (x << (r & 31)) | (x >> (-r & 31));
}
static inline uint64_t rol64(uint64_t x, int r) {
return (x << (r & 63)) | (x >> (-r & 63));
}
#endif
static inline uint64_t hi_dword(uint64_t val) {
return val >> 32;
}
static inline uint64_t lo_dword(uint64_t val) {
return val & 0xFFFFFFFF;
}
static inline uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi) {
// multiplier = ab = a * 2^32 + b
// multiplicand = cd = c * 2^32 + d
// ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d
uint64_t a = hi_dword(multiplier);
uint64_t b = lo_dword(multiplier);
uint64_t c = hi_dword(multiplicand);
uint64_t d = lo_dword(multiplicand);
uint64_t ac = a * c;
uint64_t ad = a * d;
uint64_t bc = b * c;
uint64_t bd = b * d;
uint64_t adbc = ad + bc;
uint64_t adbc_carry = adbc < ad ? 1 : 0;
// multiplier * multiplicand = product_hi * 2^64 + product_lo
uint64_t product_lo = bd + (adbc << 32);
uint64_t product_lo_carry = product_lo < bd ? 1 : 0;
*product_hi = ac + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry;
assert(ac <= *product_hi);
return product_lo;
}
static inline uint64_t div_with_reminder(uint64_t dividend, uint32_t divisor, uint32_t* remainder) {
dividend |= ((uint64_t)*remainder) << 32;
*remainder = dividend % divisor;
return dividend / divisor;
}
// Long division with 2^32 base
static inline uint32_t div128_32(uint64_t dividend_hi, uint64_t dividend_lo, uint32_t divisor, uint64_t* quotient_hi, uint64_t* quotient_lo) {
uint64_t dividend_dwords[4];
uint32_t remainder = 0;
dividend_dwords[3] = hi_dword(dividend_hi);
dividend_dwords[2] = lo_dword(dividend_hi);
dividend_dwords[1] = hi_dword(dividend_lo);
dividend_dwords[0] = lo_dword(dividend_lo);
*quotient_hi = div_with_reminder(dividend_dwords[3], divisor, &remainder) << 32;
*quotient_hi |= div_with_reminder(dividend_dwords[2], divisor, &remainder);
*quotient_lo = div_with_reminder(dividend_dwords[1], divisor, &remainder) << 32;
*quotient_lo |= div_with_reminder(dividend_dwords[0], divisor, &remainder);
return remainder;
}
// Long divisor with 2^64 base
void div128_64(uint64_t dividend_hi, uint64_t dividend_lo, uint64_t divisor, uint64_t* quotient_hi, uint64_t *quotient_lo, uint64_t *remainder_hi, uint64_t *remainder_lo);
static inline void add64clamp(uint64_t *value, uint64_t add)
{
static const uint64_t maxval = (uint64_t)-1;
if (*value > maxval - add)
*value = maxval;
else
*value += add;
}
static inline void sub64clamp(uint64_t *value, uint64_t sub)
{
if (*value < sub)
*value = 0;
else
*value -= sub;
}
#define IDENT16(x) ((uint16_t) (x))
#define IDENT32(x) ((uint32_t) (x))
#define IDENT64(x) ((uint64_t) (x))
#define SWAP16(x) ((((uint16_t) (x) & 0x00ff) << 8) | \
(((uint16_t) (x) & 0xff00) >> 8))
#define SWAP32(x) ((((uint32_t) (x) & 0x000000ff) << 24) | \
(((uint32_t) (x) & 0x0000ff00) << 8) | \
(((uint32_t) (x) & 0x00ff0000) >> 8) | \
(((uint32_t) (x) & 0xff000000) >> 24))
#define SWAP64(x) ((((uint64_t) (x) & 0x00000000000000ff) << 56) | \
(((uint64_t) (x) & 0x000000000000ff00) << 40) | \
(((uint64_t) (x) & 0x0000000000ff0000) << 24) | \
(((uint64_t) (x) & 0x00000000ff000000) << 8) | \
(((uint64_t) (x) & 0x000000ff00000000) >> 8) | \
(((uint64_t) (x) & 0x0000ff0000000000) >> 24) | \
(((uint64_t) (x) & 0x00ff000000000000) >> 40) | \
(((uint64_t) (x) & 0xff00000000000000) >> 56))
static inline uint16_t ident16(uint16_t x) { return x; }
static inline uint32_t ident32(uint32_t x) { return x; }
static inline uint64_t ident64(uint64_t x) { return x; }
#ifndef __OpenBSD__
# if defined(__ANDROID__) && defined(__swap16) && !defined(swap16)
# define swap16 __swap16
# elif !defined(swap16)
static inline uint16_t swap16(uint16_t x) {
return ((x & 0x00ff) << 8) | ((x & 0xff00) >> 8);
}
# endif
# if defined(__ANDROID__) && defined(__swap32) && !defined(swap32)
# define swap32 __swap32
# elif !defined(swap32)
static inline uint32_t swap32(uint32_t x) {
x = ((x & 0x00ff00ff) << 8) | ((x & 0xff00ff00) >> 8);
return (x << 16) | (x >> 16);
}
# endif
# if defined(__ANDROID__) && defined(__swap64) && !defined(swap64)
# define swap64 __swap64
# elif !defined(swap64)
static inline uint64_t swap64(uint64_t x) {
x = ((x & 0x00ff00ff00ff00ff) << 8) | ((x & 0xff00ff00ff00ff00) >> 8);
x = ((x & 0x0000ffff0000ffff) << 16) | ((x & 0xffff0000ffff0000) >> 16);
return (x << 32) | (x >> 32);
}
# endif
#endif /* __OpenBSD__ */
#if defined(__GNUC__)
#define UNUSED __attribute__((unused))
#else
#define UNUSED
#endif
static inline void mem_inplace_ident(void *mem UNUSED, size_t n UNUSED) { }
#undef UNUSED
static inline void mem_inplace_swap16(void *mem, size_t n) {
size_t i;
for (i = 0; i < n; i++) {
((uint16_t *) mem)[i] = swap16(((const uint16_t *) mem)[i]);
}
}
static inline void mem_inplace_swap32(void *mem, size_t n) {
size_t i;
for (i = 0; i < n; i++) {
((uint32_t *) mem)[i] = swap32(((const uint32_t *) mem)[i]);
}
}
static inline void mem_inplace_swap64(void *mem, size_t n) {
size_t i;
for (i = 0; i < n; i++) {
((uint64_t *) mem)[i] = swap64(((const uint64_t *) mem)[i]);
}
}
static inline void memcpy_ident16(void *dst, const void *src, size_t n) {
memcpy(dst, src, 2 * n);
}
static inline void memcpy_ident32(void *dst, const void *src, size_t n) {
memcpy(dst, src, 4 * n);
}
static inline void memcpy_ident64(void *dst, const void *src, size_t n) {
memcpy(dst, src, 8 * n);
}
static inline void memcpy_swap16(void *dst, const void *src, size_t n) {
size_t i;
for (i = 0; i < n; i++) {
((uint16_t *) dst)[i] = swap16(((const uint16_t *) src)[i]);
}
}
static inline void memcpy_swap32(void *dst, const void *src, size_t n) {
size_t i;
for (i = 0; i < n; i++) {
((uint32_t *) dst)[i] = swap32(((const uint32_t *) src)[i]);
}
}
static inline void memcpy_swap64(void *dst, const void *src, size_t n) {
size_t i;
for (i = 0; i < n; i++) {
((uint64_t *) dst)[i] = swap64(((const uint64_t *) src)[i]);
}
}
#ifdef _MSC_VER
# define LITTLE_ENDIAN 1234
# define BIG_ENDIAN 4321
# define BYTE_ORDER LITTLE_ENDIAN
#endif
#if !defined(BYTE_ORDER) || !defined(LITTLE_ENDIAN) || !defined(BIG_ENDIAN)
static_assert(false, "BYTE_ORDER is undefined. Perhaps, GNU extensions are not enabled");
#endif
#if BYTE_ORDER == LITTLE_ENDIAN
#define SWAP16LE IDENT16
#define SWAP16BE SWAP16
#define swap16le ident16
#define swap16be swap16
#define mem_inplace_swap16le mem_inplace_ident
#define mem_inplace_swap16be mem_inplace_swap16
#define memcpy_swap16le memcpy_ident16
#define memcpy_swap16be memcpy_swap16
#define SWAP32LE IDENT32
#define SWAP32BE SWAP32
#define swap32le ident32
#define swap32be swap32
#define mem_inplace_swap32le mem_inplace_ident
#define mem_inplace_swap32be mem_inplace_swap32
#define memcpy_swap32le memcpy_ident32
#define memcpy_swap32be memcpy_swap32
#define SWAP64LE IDENT64
#define SWAP64BE SWAP64
#define swap64le ident64
#define swap64be swap64
#define mem_inplace_swap64le mem_inplace_ident
#define mem_inplace_swap64be mem_inplace_swap64
#define memcpy_swap64le memcpy_ident64
#define memcpy_swap64be memcpy_swap64
#endif
#if BYTE_ORDER == BIG_ENDIAN
#define SWAP16BE IDENT16
#define SWAP16LE SWAP16
#define swap16be ident16
#define swap16le swap16
#define mem_inplace_swap16be mem_inplace_ident
#define mem_inplace_swap16le mem_inplace_swap16
#define memcpy_swap16be memcpy_ident16
#define memcpy_swap16le memcpy_swap16
#define SWAP32BE IDENT32
#define SWAP32LE SWAP32
#define swap32be ident32
#define swap32le swap32
#define mem_inplace_swap32be mem_inplace_ident
#define mem_inplace_swap32le mem_inplace_swap32
#define memcpy_swap32be memcpy_ident32
#define memcpy_swap32le memcpy_swap32
#define SWAP64BE IDENT64
#define SWAP64LE SWAP64
#define swap64be ident64
#define swap64le swap64
#define mem_inplace_swap64be mem_inplace_ident
#define mem_inplace_swap64le mem_inplace_swap64
#define memcpy_swap64be memcpy_ident64
#define memcpy_swap64le memcpy_swap64
#endif

View File

@ -1,40 +0,0 @@
// keccak.h
// 19-Nov-11 Markku-Juhani O. Saarinen <mjos@iki.fi>
#ifndef KECCAK_H
#define KECCAK_H
#include <stdint.h>
#include <string.h>
#ifndef KECCAK_ROUNDS
#define KECCAK_ROUNDS 24
#endif
#ifndef ROTL64
#define ROTL64(x, y) (((x) << (y)) | ((x) >> (64 - (y))))
#endif
// SHA3 Algorithm context.
typedef struct KECCAK_CTX
{
// 1600 bits algorithm hashing state
uint64_t hash[25];
// 1088-bit buffer for leftovers, block size = 136 B for 256-bit keccak
uint64_t message[17];
// count of bytes in the message[] buffer
size_t rest;
} KECCAK_CTX;
// compute a keccak hash (md) of given byte length from "in"
void keccak(const uint8_t *in, size_t inlen, uint8_t *md, int mdlen);
// update the state
void keccakf(uint64_t st[25], int norounds);
void keccak1600(const uint8_t *in, size_t inlen, uint8_t *md);
void keccak_init(KECCAK_CTX * ctx);
void keccak_update(KECCAK_CTX * ctx, const uint8_t *in, size_t inlen);
void keccak_finish(KECCAK_CTX * ctx, uint8_t *md);
#endif

View File

@ -1,30 +0,0 @@
#pragma once
#if defined(_MSC_VER)
#define PUSH_WARNINGS __pragma(warning(push))
#define POP_WARNINGS __pragma(warning(pop))
#define DISABLE_VS_WARNINGS(w) __pragma(warning(disable: w))
#define DISABLE_GCC_WARNING(w)
#define DISABLE_CLANG_WARNING(w)
#define DISABLE_GCC_AND_CLANG_WARNING(w)
#else
#include <boost/preprocessor/stringize.hpp>
#define PUSH_WARNINGS _Pragma("GCC diagnostic push")
#define POP_WARNINGS _Pragma("GCC diagnostic pop")
#define DISABLE_VS_WARNINGS(w)
#if defined(__clang__)
#define DISABLE_GCC_WARNING(w)
#define DISABLE_CLANG_WARNING DISABLE_GCC_AND_CLANG_WARNING
#else
#define DISABLE_GCC_WARNING DISABLE_GCC_AND_CLANG_WARNING
#define DISABLE_CLANG_WARNING(w)
#endif
#define DISABLE_GCC_AND_CLANG_WARNING(w) _Pragma(BOOST_PP_STRINGIZE(GCC diagnostic ignored BOOST_PP_STRINGIZE(-W##w)))
#endif

View File

@ -1,210 +0,0 @@
// keccak.c
// 19-Nov-11 Markku-Juhani O. Saarinen <mjos@iki.fi>
// A baseline Keccak (3rd round) implementation.
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include "include/int-util.h"
#include "include/hash-ops.h"
#include "include/keccak.h"
static void local_abort(const char *msg)
{
fprintf(stderr, "%s\n", msg);
#ifdef NDEBUG
_exit(1);
#else
abort();
#endif
}
const uint64_t keccakf_rndc[24] =
{
0x0000000000000001, 0x0000000000008082, 0x800000000000808a,
0x8000000080008000, 0x000000000000808b, 0x0000000080000001,
0x8000000080008081, 0x8000000000008009, 0x000000000000008a,
0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
0x000000008000808b, 0x800000000000008b, 0x8000000000008089,
0x8000000000008003, 0x8000000000008002, 0x8000000000000080,
0x000000000000800a, 0x800000008000000a, 0x8000000080008081,
0x8000000000008080, 0x0000000080000001, 0x8000000080008008
};
const int keccakf_rotc[24] =
{
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14,
27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44
};
const int keccakf_piln[24] =
{
10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4,
15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1
};
// update the state with given number of rounds
void keccakf(uint64_t st[25], int rounds)
{
int i, j, round;
uint64_t t, bc[5];
for (round = 0; round < rounds; round++) {
// Theta
for (i = 0; i < 5; i++)
bc[i] = st[i] ^ st[i + 5] ^ st[i + 10] ^ st[i + 15] ^ st[i + 20];
for (i = 0; i < 5; i++) {
t = bc[(i + 4) % 5] ^ ROTL64(bc[(i + 1) % 5], 1);
for (j = 0; j < 25; j += 5)
st[j + i] ^= t;
}
// Rho Pi
t = st[1];
for (i = 0; i < 24; i++) {
j = keccakf_piln[i];
bc[0] = st[j];
st[j] = ROTL64(t, keccakf_rotc[i]);
t = bc[0];
}
// Chi
for (j = 0; j < 25; j += 5) {
for (i = 0; i < 5; i++)
bc[i] = st[j + i];
for (i = 0; i < 5; i++)
st[j + i] ^= (~bc[(i + 1) % 5]) & bc[(i + 2) % 5];
}
// Iota
st[0] ^= keccakf_rndc[round];
}
}
// compute a keccak hash (md) of given byte length from "in"
typedef uint64_t state_t[25];
void keccak(const uint8_t *in, size_t inlen, uint8_t *md, int mdlen)
{
state_t st;
uint8_t temp[144];
size_t i, rsiz, rsizw;
static_assert(HASH_DATA_AREA <= sizeof(temp), "Bad keccak preconditions");
if (mdlen <= 0 || (mdlen > 100 && sizeof(st) != (size_t)mdlen))
{
local_abort("Bad keccak use");
}
rsiz = sizeof(state_t) == mdlen ? HASH_DATA_AREA : 200 - 2 * mdlen;
rsizw = rsiz / 8;
memset(st, 0, sizeof(st));
for ( ; inlen >= rsiz; inlen -= rsiz, in += rsiz) {
for (i = 0; i < rsizw; i++) {
uint64_t ina;
memcpy(&ina, in + i * 8, 8);
st[i] ^= swap64le(ina);
}
keccakf(st, KECCAK_ROUNDS);
}
// last block and padding
if (inlen + 1 >= sizeof(temp) || inlen > rsiz || rsiz - inlen + inlen + 1 >= sizeof(temp) || rsiz == 0 || rsiz - 1 >= sizeof(temp) || rsizw * 8 > sizeof(temp))
{
local_abort("Bad keccak use");
}
if (inlen > 0)
memcpy(temp, in, inlen);
temp[inlen++] = 1;
memset(temp + inlen, 0, rsiz - inlen);
temp[rsiz - 1] |= 0x80;
for (i = 0; i < rsizw; i++)
st[i] ^= swap64le(((uint64_t *) temp)[i]);
keccakf(st, KECCAK_ROUNDS);
if (((size_t)mdlen % sizeof(uint64_t)) != 0)
{
local_abort("Bad keccak use");
}
memcpy_swap64le(md, st, mdlen/sizeof(uint64_t));
}
void keccak1600(const uint8_t *in, size_t inlen, uint8_t *md)
{
keccak(in, inlen, md, sizeof(state_t));
}
#define KECCAK_FINALIZED 0x80000000
#define KECCAK_BLOCKLEN 136
#define KECCAK_WORDS 17
#define KECCAK_DIGESTSIZE 32
#define KECCAK_PROCESS_BLOCK(st, block) { \
for (int i_ = 0; i_ < KECCAK_WORDS; i_++){ \
((st))[i_] ^= swap64le(((block))[i_]); \
}; \
keccakf(st, KECCAK_ROUNDS); }
void keccak_init(KECCAK_CTX * ctx){
memset(ctx, 0, sizeof(KECCAK_CTX));
}
void keccak_update(KECCAK_CTX * ctx, const uint8_t *in, size_t inlen){
if (ctx->rest & KECCAK_FINALIZED) {
local_abort("Bad keccak use");
}
const size_t idx = ctx->rest;
ctx->rest = (ctx->rest + inlen) % KECCAK_BLOCKLEN;
// fill partial block
if (idx) {
size_t left = KECCAK_BLOCKLEN - idx;
memcpy((char*)ctx->message + idx, in, (inlen < left ? inlen : left));
if (inlen < left) return;
KECCAK_PROCESS_BLOCK(ctx->hash, ctx->message);
in += left;
inlen -= left;
}
while (inlen >= KECCAK_BLOCKLEN) {
memcpy(ctx->message, in, KECCAK_BLOCKLEN);
KECCAK_PROCESS_BLOCK(ctx->hash, ctx->message);
in += KECCAK_BLOCKLEN;
inlen -= KECCAK_BLOCKLEN;
}
if (inlen) {
memcpy(ctx->message, in, inlen);
}
}
void keccak_finish(KECCAK_CTX * ctx, uint8_t *md){
if (!(ctx->rest & KECCAK_FINALIZED))
{
// clear the rest of the data queue
memset((char*)ctx->message + ctx->rest, 0, KECCAK_BLOCKLEN - ctx->rest);
((char*)ctx->message)[ctx->rest] |= 0x01;
((char*)ctx->message)[KECCAK_BLOCKLEN - 1] |= 0x80;
// process final block
KECCAK_PROCESS_BLOCK(ctx->hash, ctx->message);
ctx->rest = KECCAK_FINALIZED; // mark context as finalized
}
static_assert(KECCAK_BLOCKLEN > KECCAK_DIGESTSIZE, "");
static_assert(KECCAK_DIGESTSIZE % sizeof(uint64_t) == 0, "");
if (md) {
memcpy_swap64le(md, ctx->hash, KECCAK_DIGESTSIZE / sizeof(uint64_t));
}
}

View File

@ -2,15 +2,11 @@
#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
extern "C" {
fn hash_to_p3(hash: *const u8, p3: *mut ge_p3);
fn ge_p3_tobytes(bytes: *mut u8, hash8_p3: *const ge_p3);
}
use anyhow::{bail, Context, Result};
use anyhow::{bail, Result};
use curve25519_dalek::constants::ED25519_BASEPOINT_POINT;
use curve25519_dalek::edwards::{CompressedEdwardsY, EdwardsPoint};
use curve25519_dalek::edwards::EdwardsPoint;
use curve25519_dalek::scalar::Scalar;
use hash_edwards_to_edwards::hash_point_to_point;
use rand::rngs::OsRng;
use std::convert::TryInto;
use tiny_keccak::{Hasher, Keccak};
@ -18,37 +14,6 @@ use tiny_keccak::{Hasher, Keccak};
const RING_SIZE: usize = 11;
const DOMAIN_TAG: &str = "CSLAG_c";
#[repr(C)]
#[derive(Debug)]
struct ge_p3 {
X: [i32; 10],
Y: [i32; 10],
Z: [i32; 10],
T: [i32; 10],
}
pub fn hash_point_to_point(point: EdwardsPoint) -> Result<EdwardsPoint> {
let bytes = point.compress();
let mut compressed = [0u8; 32];
unsafe {
let mut p3 = ge_p3 {
X: [0; 10],
Y: [0; 10],
Z: [0; 10],
T: [0; 10],
};
hash_to_p3(bytes.as_bytes().as_ptr() as *const u8, &mut p3);
ge_p3_tobytes(&mut compressed as *mut u8, &p3);
};
let compressed = CompressedEdwardsY::from_slice(&compressed);
let point = compressed.decompress().context("not y-coordinate")?;
Ok(point)
}
fn challenge(
s_i: Scalar,
pk_i: EdwardsPoint,
@ -58,7 +23,7 @@ fn challenge(
) -> Result<Scalar> {
let L_i = s_i * ED25519_BASEPOINT_POINT + h_prev * pk_i;
let H_p_pk_i = hash_point_to_point(pk_i)?;
let H_p_pk_i = hash_point_to_point(pk_i);
let R_i = s_i * H_p_pk_i + h_prev * I;
@ -121,6 +86,7 @@ fn final_challenge(
.enumerate()
.fold(h_0, |h_prev, (i, s_i)| {
let pk_i = ring[i + 1];
// TODO: Do not unwrap here
challenge(*s_i, pk_i, h_prev, I, keccak.clone()).unwrap()
});
@ -222,7 +188,7 @@ impl Alice0 {
let alpha_a = Scalar::random(&mut OsRng);
let p_k = ring[0];
let H_p_pk = hash_point_to_point(p_k)?;
let H_p_pk = hash_point_to_point(p_k);
let I_a = s_prime_a * H_p_pk;
let I_hat_a = alpha_a * H_p_pk;
@ -350,8 +316,8 @@ impl Bob0 {
) -> Result<Self> {
let alpha_b = Scalar::random(&mut OsRng);
let p_k = ring.first().unwrap();
let H_p_pk = hash_point_to_point(*p_k)?;
let p_k = ring[0];
let H_p_pk = hash_point_to_point(p_k);
let I_b = s_b * H_p_pk;
let I_hat_b = alpha_b * H_p_pk;
@ -651,7 +617,7 @@ mod tests {
let r_a = Scalar::random(&mut OsRng);
let R_a = r_a * ED25519_BASEPOINT_POINT;
let pk_hashed_to_point = hash_point_to_point(pk).unwrap();
let pk_hashed_to_point = hash_point_to_point(pk);
let R_prime_a = r_a * pk_hashed_to_point;
@ -686,19 +652,4 @@ mod tests {
assert!(sig.verify(ring, msg_to_sign).unwrap());
}
#[test]
fn test_hash_point_to_point() {
let slice = hex::decode("a7fbdeeccb597c2d5fdaf2ea2e10cbfcd26b5740903e7f6d46bcbf9a90384fc6")
.unwrap();
let point = CompressedEdwardsY::from_slice(&slice).decompress().unwrap();
let actual = hash_point_to_point(point).unwrap();
let slice = hex::decode("f055ba2d0d9828ce2e203d9896bfda494d7830e7e3a27fa27d5eaa825a79a19c")
.unwrap();
let expected = CompressedEdwardsY::from_slice(&slice).decompress().unwrap();
assert_eq!(expected, actual);
}
}