hash_to_scalar working with c bindings

This commit is contained in:
rishflab 2021-04-19 15:51:10 +10:00
parent 954e121641
commit c8b6a4d3c6
5 changed files with 473 additions and 36 deletions

11
CMakeLists.txt Normal file
View File

@ -0,0 +1,11 @@
cmake_minimum_required(VERSION 3.19)
project(xmr_btc_swap_comit C)
set(CMAKE_C_STANDARD 11)
include_directories(monero-adaptor/depend/hash)
add_library(xmr_btc_swap_comit
monero-adaptor/depend/hash/hash.c
monero-adaptor/depend/hash/hash.h
monero-adaptor/depend/hash/int-util.h)

View File

@ -4,9 +4,13 @@
#include "hash.h" #include "hash.h"
#include <string.h> #include <string.h>
#include <assert.h> #include <assert.h>
#include "int-util.h"
static void local_abort(const char *msg) #ifndef ROTL64
{ #define ROTL64(x, y) (((x) << (y)) | ((x) >> (64 - (y))))
#endif
static void local_abort(const char *msg) {
fprintf(stderr, "%s\n", msg); fprintf(stderr, "%s\n", msg);
#ifdef NDEBUG #ifdef NDEBUG
_exit(1); _exit(1);
@ -15,22 +19,85 @@ static void local_abort(const char *msg)
#endif #endif
} }
typedef uint64_t state_t[25]; typedef uint64_t state_t[25];
void hash_to_scalar(const uint8_t *in, size_t inlen, uint8_t *md, int mdlen) { void hash_to_scalar(const uint8_t *in, size_t inlen, uint8_t *md, int mdlen) {
keccak(in, inlen, md, mdlen); keccak(in, inlen, md, mdlen);
sc_reduce32(md); sc_reduce32(md);
} }
void keccak(const uint8_t *in, size_t inlen, uint8_t *md, int mdlen) const uint64_t keccakf_rndc[24] =
{ {
0x0000000000000001, 0x0000000000008082, 0x800000000000808a,
0x8000000080008000, 0x000000000000808b, 0x0000000080000001,
0x8000000080008081, 0x8000000000008009, 0x000000000000008a,
0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
0x000000008000808b, 0x800000000000008b, 0x8000000000008089,
0x8000000000008003, 0x8000000000008002, 0x8000000000000080,
0x000000000000800a, 0x800000008000000a, 0x8000000080008081,
0x8000000000008080, 0x0000000080000001, 0x8000000080008008
};
const int keccakf_rotc[24] =
{
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14,
27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44
};
const int keccakf_piln[24] =
{
10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4,
15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1
};
void keccakf(uint64_t st[25], int rounds) {
int i, j, round;
uint64_t t, bc[5];
for (round = 0; round < rounds; round++) {
// Theta
for (i = 0; i < 5; i++)
bc[i] = st[i] ^ st[i + 5] ^ st[i + 10] ^ st[i + 15] ^ st[i + 20];
for (i = 0; i < 5; i++) {
t = bc[(i + 4) % 5] ^ ROTL64(bc[(i + 1) % 5], 1);
for (j = 0; j < 25; j += 5)
st[j + i] ^= t;
}
// Rho Pi
t = st[1];
for (i = 0; i < 24; i++) {
j = keccakf_piln[i];
bc[0] = st[j];
st[j] = ROTL64(t, keccakf_rotc[i]);
t = bc[0];
}
// Chi
for (j = 0; j < 25; j += 5) {
for (i = 0; i < 5; i++)
bc[i] = st[j + i];
for (i = 0; i < 5; i++)
st[j + i] ^= (~bc[(i + 1) % 5]) & bc[(i + 2) % 5];
}
// Iota
st[0] ^= keccakf_rndc[round];
}
}
void keccak(const uint8_t *in, size_t inlen, uint8_t *md, int mdlen) {
state_t st; state_t st;
uint8_t temp[144]; uint8_t temp[144];
size_t i, rsiz, rsizw; size_t i, rsiz, rsizw;
static_assert(HASH_DATA_AREA <= sizeof(temp), "Bad keccak preconditions"); static_assert(HASH_DATA_AREA <= sizeof(temp), "Bad keccak preconditions");
if (mdlen <= 0 || (mdlen > 100 && sizeof(st) != (size_t)mdlen)) if (mdlen <= 0 || (mdlen > 100 && sizeof(st) != (size_t) mdlen)) {
{
local_abort("Bad keccak use"); local_abort("Bad keccak use");
} }
@ -49,8 +116,7 @@ void keccak(const uint8_t *in, size_t inlen, uint8_t *md, int mdlen)
} }
// last block and padding // last block and padding
if (inlen + 1 >= sizeof(temp) || inlen > rsiz || rsiz - inlen + inlen + 1 >= sizeof(temp) || rsiz == 0 || rsiz - 1 >= sizeof(temp) || rsizw * 8 > sizeof(temp)) if (inlen + 1 >= sizeof(temp) || inlen > rsiz || rsiz - inlen + inlen + 1 >= sizeof(temp) || rsiz == 0 || rsiz - 1 >= sizeof(temp) || rsizw * 8 > sizeof(temp)) {
{
local_abort("Bad keccak use"); local_abort("Bad keccak use");
} }
@ -65,13 +131,30 @@ void keccak(const uint8_t *in, size_t inlen, uint8_t *md, int mdlen)
keccakf(st, KECCAK_ROUNDS); keccakf(st, KECCAK_ROUNDS);
if (((size_t)mdlen % sizeof(uint64_t)) != 0) if (((size_t) mdlen % sizeof(uint64_t)) != 0) {
{
local_abort("Bad keccak use"); local_abort("Bad keccak use");
} }
memcpy_swap64le(md, st, mdlen / sizeof(uint64_t)); memcpy_swap64le(md, st, mdlen / sizeof(uint64_t));
} }
uint64_t load_3(const unsigned char *in) {
uint64_t result;
result = (uint64_t) in[0];
result |= ((uint64_t) in[1]) << 8;
result |= ((uint64_t) in[2]) << 16;
return result;
}
uint64_t load_4(const unsigned char *in) {
uint64_t result;
result = (uint64_t) in[0];
result |= ((uint64_t) in[1]) << 8;
result |= ((uint64_t) in[2]) << 16;
result |= ((uint64_t) in[3]) << 24;
return result;
}
void sc_reduce32(unsigned char *s) { void sc_reduce32(unsigned char *s) {
int64_t s0 = 2097151 & load_3(s); int64_t s0 = 2097151 & load_3(s);
int64_t s1 = 2097151 & (load_4(s + 2) >> 5); int64_t s1 = 2097151 & (load_4(s + 2) >> 5);

View File

@ -17,7 +17,6 @@ enum {
HASH_DATA_AREA = 136 HASH_DATA_AREA = 136
}; };
void hash_to_scalar(const uint8_t *in, size_t inlen, uint8_t *md, int mdlen);
void keccak(const uint8_t *in, size_t inlen, uint8_t *md, int mdlen); void keccak(const uint8_t *in, size_t inlen, uint8_t *md, int mdlen);
void sc_reduce32(unsigned char *); void sc_reduce32(unsigned char *);

View File

@ -0,0 +1,339 @@
// Copyright (c) 2014-2020, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#pragma once
#include <assert.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#ifndef _MSC_VER
#include <sys/param.h>
#endif
#if defined(__ANDROID__)
#include <byteswap.h>
#endif
#if defined(__sun) && defined(__SVR4)
#include <endian.h>
#endif
#if defined(_MSC_VER)
#include <stdlib.h>
static inline uint32_t rol32(uint32_t x, int r) {
static_assert(sizeof(uint32_t) == sizeof(unsigned int), "this code assumes 32-bit integers");
return _rotl(x, r);
}
static inline uint64_t rol64(uint64_t x, int r) {
return _rotl64(x, r);
}
#else
static inline uint32_t rol32(uint32_t x, int r) {
return (x << (r & 31)) | (x >> (-r & 31));
}
static inline uint64_t rol64(uint64_t x, int r) {
return (x << (r & 63)) | (x >> (-r & 63));
}
#endif
static inline uint64_t hi_dword(uint64_t val) {
return val >> 32;
}
static inline uint64_t lo_dword(uint64_t val) {
return val & 0xFFFFFFFF;
}
static inline uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t *product_hi) {
// multiplier = ab = a * 2^32 + b
// multiplicand = cd = c * 2^32 + d
// ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d
uint64_t a = hi_dword(multiplier);
uint64_t b = lo_dword(multiplier);
uint64_t c = hi_dword(multiplicand);
uint64_t d = lo_dword(multiplicand);
uint64_t ac = a * c;
uint64_t ad = a * d;
uint64_t bc = b * c;
uint64_t bd = b * d;
uint64_t adbc = ad + bc;
uint64_t adbc_carry = adbc < ad ? 1 : 0;
// multiplier * multiplicand = product_hi * 2^64 + product_lo
uint64_t product_lo = bd + (adbc << 32);
uint64_t product_lo_carry = product_lo < bd ? 1 : 0;
*product_hi = ac + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry;
assert(ac <= *product_hi);
return product_lo;
}
static inline uint64_t div_with_reminder(uint64_t dividend, uint32_t divisor, uint32_t *remainder) {
dividend |= ((uint64_t) *remainder) << 32;
*remainder = dividend % divisor;
return dividend / divisor;
}
// Long division with 2^32 base
static inline uint32_t
div128_32(uint64_t dividend_hi, uint64_t dividend_lo, uint32_t divisor, uint64_t *quotient_hi, uint64_t *quotient_lo) {
uint64_t dividend_dwords[4];
uint32_t remainder = 0;
dividend_dwords[3] = hi_dword(dividend_hi);
dividend_dwords[2] = lo_dword(dividend_hi);
dividend_dwords[1] = hi_dword(dividend_lo);
dividend_dwords[0] = lo_dword(dividend_lo);
*quotient_hi = div_with_reminder(dividend_dwords[3], divisor, &remainder) << 32;
*quotient_hi |= div_with_reminder(dividend_dwords[2], divisor, &remainder);
*quotient_lo = div_with_reminder(dividend_dwords[1], divisor, &remainder) << 32;
*quotient_lo |= div_with_reminder(dividend_dwords[0], divisor, &remainder);
return remainder;
}
// Long divisor with 2^64 base
void
div128_64(uint64_t dividend_hi, uint64_t dividend_lo, uint64_t divisor, uint64_t *quotient_hi, uint64_t *quotient_lo,
uint64_t *remainder_hi, uint64_t *remainder_lo);
static inline void add64clamp(uint64_t *value, uint64_t add) {
static const uint64_t maxval = (uint64_t) -1;
if (*value > maxval - add)
*value = maxval;
else
*value += add;
}
static inline void sub64clamp(uint64_t *value, uint64_t sub) {
if (*value < sub)
*value = 0;
else
*value -= sub;
}
#define IDENT16(x) ((uint16_t) (x))
#define IDENT32(x) ((uint32_t) (x))
#define IDENT64(x) ((uint64_t) (x))
#define SWAP16(x) ((((uint16_t) (x) & 0x00ff) << 8) | \
(((uint16_t) (x) & 0xff00) >> 8))
#define SWAP32(x) ((((uint32_t) (x) & 0x000000ff) << 24) | \
(((uint32_t) (x) & 0x0000ff00) << 8) | \
(((uint32_t) (x) & 0x00ff0000) >> 8) | \
(((uint32_t) (x) & 0xff000000) >> 24))
#define SWAP64(x) ((((uint64_t) (x) & 0x00000000000000ff) << 56) | \
(((uint64_t) (x) & 0x000000000000ff00) << 40) | \
(((uint64_t) (x) & 0x0000000000ff0000) << 24) | \
(((uint64_t) (x) & 0x00000000ff000000) << 8) | \
(((uint64_t) (x) & 0x000000ff00000000) >> 8) | \
(((uint64_t) (x) & 0x0000ff0000000000) >> 24) | \
(((uint64_t) (x) & 0x00ff000000000000) >> 40) | \
(((uint64_t) (x) & 0xff00000000000000) >> 56))
static inline uint16_t ident16(uint16_t x) { return x; }
static inline uint32_t ident32(uint32_t x) { return x; }
static inline uint64_t ident64(uint64_t x) { return x; }
#ifndef __OpenBSD__
# if defined(__ANDROID__) && defined(__swap16) && !defined(swap16)
# define swap16 __swap16
# elif !defined(swap16)
static inline uint16_t swap16(uint16_t x) {
return ((x & 0x00ff) << 8) | ((x & 0xff00) >> 8);
}
# endif
# if defined(__ANDROID__) && defined(__swap32) && !defined(swap32)
# define swap32 __swap32
# elif !defined(swap32)
static inline uint32_t swap32(uint32_t x) {
x = ((x & 0x00ff00ff) << 8) | ((x & 0xff00ff00) >> 8);
return (x << 16) | (x >> 16);
}
# endif
# if defined(__ANDROID__) && defined(__swap64) && !defined(swap64)
# define swap64 __swap64
# elif !defined(swap64)
static inline uint64_t swap64(uint64_t x) {
x = ((x & 0x00ff00ff00ff00ff) << 8) | ((x & 0xff00ff00ff00ff00) >> 8);
x = ((x & 0x0000ffff0000ffff) << 16) | ((x & 0xffff0000ffff0000) >> 16);
return (x << 32) | (x >> 32);
}
# endif
#endif /* __OpenBSD__ */
#if defined(__GNUC__)
#define UNUSED __attribute__((unused))
#else
#define UNUSED
#endif
static inline void mem_inplace_ident(void *mem UNUSED, size_t n UNUSED) {}
#undef UNUSED
static inline void mem_inplace_swap16(void *mem, size_t n) {
size_t i;
for (i = 0; i < n; i++) {
((uint16_t *) mem)[i] = swap16(((const uint16_t *) mem)[i]);
}
}
static inline void mem_inplace_swap32(void *mem, size_t n) {
size_t i;
for (i = 0; i < n; i++) {
((uint32_t *) mem)[i] = swap32(((const uint32_t *) mem)[i]);
}
}
static inline void mem_inplace_swap64(void *mem, size_t n) {
size_t i;
for (i = 0; i < n; i++) {
((uint64_t *) mem)[i] = swap64(((const uint64_t *) mem)[i]);
}
}
static inline void memcpy_ident16(void *dst, const void *src, size_t n) {
memcpy(dst, src, 2 * n);
}
static inline void memcpy_ident32(void *dst, const void *src, size_t n) {
memcpy(dst, src, 4 * n);
}
static inline void memcpy_ident64(void *dst, const void *src, size_t n) {
memcpy(dst, src, 8 * n);
}
static inline void memcpy_swap16(void *dst, const void *src, size_t n) {
size_t i;
for (i = 0; i < n; i++) {
((uint16_t *) dst)[i] = swap16(((const uint16_t *) src)[i]);
}
}
static inline void memcpy_swap32(void *dst, const void *src, size_t n) {
size_t i;
for (i = 0; i < n; i++) {
((uint32_t *) dst)[i] = swap32(((const uint32_t *) src)[i]);
}
}
static inline void memcpy_swap64(void *dst, const void *src, size_t n) {
size_t i;
for (i = 0; i < n; i++) {
((uint64_t *) dst)[i] = swap64(((const uint64_t *) src)[i]);
}
}
#ifdef _MSC_VER
# define LITTLE_ENDIAN 1234
# define BIG_ENDIAN 4321
# define BYTE_ORDER LITTLE_ENDIAN
#endif
#if !defined(BYTE_ORDER) || !defined(LITTLE_ENDIAN) || !defined(BIG_ENDIAN)
static_assert(false, "BYTE_ORDER is undefined. Perhaps, GNU extensions are not enabled");
#endif
#if BYTE_ORDER == LITTLE_ENDIAN
#define SWAP16LE IDENT16
#define SWAP16BE SWAP16
#define swap16le ident16
#define swap16be swap16
#define mem_inplace_swap16le mem_inplace_ident
#define mem_inplace_swap16be mem_inplace_swap16
#define memcpy_swap16le memcpy_ident16
#define memcpy_swap16be memcpy_swap16
#define SWAP32LE IDENT32
#define SWAP32BE SWAP32
#define swap32le ident32
#define swap32be swap32
#define mem_inplace_swap32le mem_inplace_ident
#define mem_inplace_swap32be mem_inplace_swap32
#define memcpy_swap32le memcpy_ident32
#define memcpy_swap32be memcpy_swap32
#define SWAP64LE IDENT64
#define SWAP64BE SWAP64
#define swap64le ident64
#define swap64be swap64
#define mem_inplace_swap64le mem_inplace_ident
#define mem_inplace_swap64be mem_inplace_swap64
#define memcpy_swap64le memcpy_ident64
#define memcpy_swap64be memcpy_swap64
#endif
#if BYTE_ORDER == BIG_ENDIAN
#define SWAP16BE IDENT16
#define SWAP16LE SWAP16
#define swap16be ident16
#define swap16le swap16
#define mem_inplace_swap16be mem_inplace_ident
#define mem_inplace_swap16le mem_inplace_swap16
#define memcpy_swap16be memcpy_ident16
#define memcpy_swap16le memcpy_swap16
#define SWAP32BE IDENT32
#define SWAP32LE SWAP32
#define swap32be ident32
#define swap32le swap32
#define mem_inplace_swap32be mem_inplace_ident
#define mem_inplace_swap32le mem_inplace_swap32
#define memcpy_swap32be memcpy_ident32
#define memcpy_swap32le memcpy_swap32
#define SWAP64BE IDENT64
#define SWAP64LE SWAP64
#define swap64be ident64
#define swap64le swap64
#define mem_inplace_swap64be mem_inplace_ident
#define mem_inplace_swap64le mem_inplace_swap64
#define memcpy_swap64be memcpy_ident64
#define memcpy_swap64le memcpy_swap64
#endif

View File

@ -2,7 +2,11 @@
#![allow(non_upper_case_globals)] #![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)] #![allow(non_camel_case_types)]
include!(concat!(env!("OUT_DIR"), "/bindings.rs")); // include!(concat!(env!("OUT_DIR"), "/bindings.rs"));
extern "C" {
fn hash_to_scalar(i: *const u8, i_len: usize, md: *mut u8, md_len: usize);
}
use anyhow::{bail, Result}; use anyhow::{bail, Result};
use curve25519_dalek::constants::RISTRETTO_BASEPOINT_POINT; use curve25519_dalek::constants::RISTRETTO_BASEPOINT_POINT;
@ -706,6 +710,7 @@ mod tests2 {
fn test_add() { fn test_add() {
let hash = [0u8; 32]; let hash = [0u8; 32];
let mut scalar = [0u8; 32]; let mut scalar = [0u8; 32];
unsafe { hash_to_scalar(&hash as *const u8, 32, &mut scalar as *mut u8, 32) }; unsafe { hash_to_scalar(&hash as *const u8, 32, &mut scalar as *mut u8, 32) };
dbg!(scalar); dbg!(scalar);
} }