We're almost there (I think)

This commit is contained in:
Lucas Soriano del Pino 2021-05-10 19:28:00 +10:00
parent b944f0f989
commit b7fa6edd10
No known key found for this signature in database
GPG Key ID: EE611E973A1530E7
5 changed files with 231 additions and 88 deletions

2
Cargo.lock generated
View File

@ -2265,7 +2265,7 @@ dependencies = [
[[package]]
name = "monero"
version = "0.12.0"
source = "git+https://github.com/comit-network/monero-rs#f6a500b72dc3a011b8ab3145f98f573dd0d20a2f"
source = "git+https://github.com/comit-network/monero-rs?branch=ecdh_recover_mask#103dc4d3353f46870c5a3405d27e961f4b195350"
dependencies = [
"base58-monero",
"clear_on_drop",

View File

@ -3,4 +3,4 @@ members = ["monero-adaptor", "monero-harness", "monero-rpc", "swap", "monero-wal
[patch.crates-io]
torut = { git = "https://github.com/bonomat/torut/", branch = "feature-flag-tor-secret-keys", default-features = false, features = [ "v3", "control" ] }
monero = { git = "https://github.com/comit-network/monero-rs" }
monero = { git = "https://github.com/comit-network/monero-rs", branch = "ecdh_recover_mask" }

View File

@ -1,6 +1,7 @@
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![warn(clippy::needless_pass_by_value)]
use anyhow::{bail, Result};
use curve25519_dalek::constants::ED25519_BASEPOINT_POINT;
@ -10,7 +11,7 @@ use hash_edwards_to_edwards::hash_point_to_point;
use rand::{CryptoRng, Rng};
use ring::Ring;
use std::convert::TryInto;
use tiny_keccak::Hasher;
use tiny_keccak::{Hasher, Keccak};
mod ring;
@ -19,16 +20,6 @@ const HASH_KEY_CLSAG_AGG_0: &str = "CLSAG_agg_0";
const HASH_KEY_CLSAG_AGG_1: &str = "CLSAG_agg_1";
const HASH_KEY_CLSAG_ROUND: &str = "CLSAG_round";
// for every iteration we compute:
// c_p = h_prev * mu_P; and
// c_c = h_prev * mu_C.
//
// L_i = s_i * G + c_p * pk_i + c_c * (commitment_i - pseudoutcommitment)
// R_i = s_i * H_p_pk_i + c_p * I + c_c * (z * hash_to_point(signing pk))
//
// h = keccak256("CLSAG_round" || ring
// ring of commitments || pseudooutput commitment || msg || L_i || R_i)
struct AggregationHashes {
mu_P: Scalar,
mu_C: Scalar,
@ -36,8 +27,8 @@ struct AggregationHashes {
impl AggregationHashes {
pub fn new(
ring: Ring,
commitment_ring: Ring,
ring: &Ring,
commitment_ring: &Ring,
I: EdwardsPoint,
z: Scalar,
H_p_pk: EdwardsPoint,
@ -84,7 +75,7 @@ impl AggregationHashes {
z_key_image: &CompressedEdwardsY,
pseudo_output_commitment: &CompressedEdwardsY,
) -> Scalar {
let mut hasher = tiny_keccak::Keccak::v256();
let mut hasher = Keccak::v256();
hasher.update(domain_prefix.as_bytes());
hasher.update(ring);
hasher.update(commitment_ring);
@ -99,19 +90,27 @@ impl AggregationHashes {
}
}
// for every iteration we compute:
// c_p = h_prev * mu_P; and
// c_c = h_prev * mu_C.
//
// h = keccak256("CLSAG_round" || ring
// ring of commitments || pseudooutput commitment || msg || L_i || R_i)
fn challenge(
prefix: &[u8],
s_i: Scalar,
pk_i: EdwardsPoint,
adjusted_commitment_i: EdwardsPoint,
h_prev: Scalar,
I: EdwardsPoint,
mus: &AggregationHashes,
) -> Result<Scalar> {
let L_i = s_i * ED25519_BASEPOINT_POINT + h_prev * pk_i;
let L_i = compute_L(h_prev, mus, s_i, pk_i, adjusted_commitment_i);
let R_i = compute_R(h_prev, mus, pk_i, s_i, I, adjusted_commitment_i);
let H_p_pk_i = hash_point_to_point(pk_i);
let R_i = s_i * H_p_pk_i + h_prev * I;
let mut hasher = tiny_keccak::Keccak::v256();
let mut hasher = Keccak::v256();
hasher.update(prefix);
hasher.update(&L_i.compress().as_bytes().to_vec());
hasher.update(&R_i.compress().as_bytes().to_vec());
@ -122,19 +121,59 @@ fn challenge(
Ok(Scalar::from_bytes_mod_order(output))
}
/// Compute the prefix for the hash common to every iteration of the ring signature algorithm.
// L_i = s_i * G + c_p * pk_i + c_c * (commitment_i - pseudoutcommitment)
fn compute_L(
h_prev: Scalar,
mus: &AggregationHashes,
s_i: Scalar,
pk_i: EdwardsPoint,
adjusted_commitment_i: EdwardsPoint,
) -> EdwardsPoint {
let c_p = h_prev * mus.mu_P;
let c_c = h_prev * mus.mu_C;
(s_i * ED25519_BASEPOINT_POINT) + (c_p * pk_i) + c_c * adjusted_commitment_i
}
// R_i = s_i * H_p_pk_i + c_p * I + c_c * (z * hash_to_point(signing pk))
fn compute_R(
h_prev: Scalar,
mus: &AggregationHashes,
pk_i: EdwardsPoint,
s_i: Scalar,
I: EdwardsPoint,
z_key_image: EdwardsPoint,
) -> EdwardsPoint {
let c_p = h_prev * mus.mu_P;
let c_c = h_prev * mus.mu_C;
let H_p_pk_i = hash_point_to_point(pk_i);
(s_i * H_p_pk_i) + (c_p * I) + c_c * z_key_image
}
/// Compute the prefix for the hash common to every iteration of the ring
/// signature algorithm.
///
/// "CLSAG_round" || ring || ring of commitments || pseudooutput commitment || msg || alpha * G
/// "CLSAG_round" || ring || ring of commitments || pseudooutput commitment ||
/// msg || alpha * G
fn clsag_round_hash_prefix(
ring: &[u8],
commitment_ring: &[u8],
pseudo_output_commitment: &EdwardsPoint,
pseudo_output_commitment: EdwardsPoint,
msg: &[u8],
) -> Vec<u8> {
let domain_prefix = HASH_KEY_CLSAG_ROUND.as_bytes();
let pseudo_output_commitment = pseudo_output_commitment.compress().as_bytes();
let pseudo_output_commitment = pseudo_output_commitment.compress();
let pseudo_output_commitment = pseudo_output_commitment.as_bytes();
let mut prefix = Vec::with_capacity(domain_prefix.len() + ring.len() + commitment_ring.len() + pseudo_output_commitment.len() + msg.len());
let mut prefix = Vec::with_capacity(
domain_prefix.len()
+ ring.len()
+ commitment_ring.len()
+ pseudo_output_commitment.len()
+ msg.len(),
);
prefix.extend(domain_prefix);
prefix.extend(ring);
@ -145,38 +184,53 @@ fn clsag_round_hash_prefix(
prefix
}
#[allow(clippy::too_many_arguments)]
fn final_challenge(
fake_responses: [Scalar; RING_SIZE - 1],
ring: Ring,
T_a: EdwardsPoint,
T_b: EdwardsPoint,
R_a: EdwardsPoint,
I_hat_a: EdwardsPoint,
I_hat_b: EdwardsPoint,
R_prime_a: EdwardsPoint,
commitment_ring: Ring,
H_p_pk: EdwardsPoint,
pseudo_output_commitment: EdwardsPoint,
z: Scalar,
L: EdwardsPoint,
R: EdwardsPoint,
I: EdwardsPoint,
msg: &[u8],
) -> Result<(Scalar, Scalar)> {
let prefix = clsag_round_hash_prefix(ring.as_ref(), todo!(), todo!(), msg);
let prefix = clsag_round_hash_prefix(
ring.as_ref(),
commitment_ring.as_ref(),
pseudo_output_commitment,
msg,
);
let h_0 = {
let mut keccak = tiny_keccak::Keccak::v256();
let mut keccak = Keccak::v256();
keccak.update(&prefix);
keccak.update((T_a + T_b + R_a).compress().as_bytes());
keccak.update((I_hat_a + I_hat_b + R_prime_a).compress().as_bytes());
keccak.update(L.compress().as_bytes());
keccak.update(R.compress().as_bytes());
let mut output = [0u8; 64];
keccak.finalize(&mut output);
Scalar::from_bytes_mod_order_wide(&output)
};
let mus = AggregationHashes::new(
&ring,
&commitment_ring,
I,
z,
H_p_pk,
pseudo_output_commitment,
);
let h_last = fake_responses
.iter()
.enumerate()
.fold(h_0, |h_prev, (i, s_i)| {
let pk_i = ring[i + 1];
let adjusted_commitment_i = commitment_ring[i] - pseudo_output_commitment;
// TODO: Do not unwrap here
challenge(&prefix, *s_i, pk_i, h_prev, I).unwrap()
challenge(&prefix, *s_i, pk_i, adjusted_commitment_i, h_prev, I, &mus).unwrap()
});
Ok((h_last, h_0))
@ -189,6 +243,7 @@ pub struct AdaptorSignature {
h_0: Scalar,
/// Key image of the real key in the ring.
I: EdwardsPoint,
// TODO: Add commitment key image D = z * H_p_pk
}
impl AdaptorSignature {
@ -235,8 +290,10 @@ impl Signature {
&clsag_round_hash_prefix(&ring_concat, todo!(), todo!(), msg),
*s_i,
pk_i,
todo!(),
h,
self.I,
todo!(),
)?;
}
@ -255,6 +312,7 @@ impl From<Signature> for monero::util::ringct::Clsag {
c1: monero::util::ringct::Key {
key: from.h_0.to_bytes(),
},
// TODO: Must use commitment key image D = z * H_p_pk
D: monero::util::ringct::Key {
key: from.I.compress().to_bytes(),
},
@ -266,6 +324,8 @@ pub struct Alice0 {
// secret index is always 0
ring: Ring,
fake_responses: [Scalar; RING_SIZE - 1],
commitment_ring: Ring,
pseudo_output_commitment: EdwardsPoint,
msg: [u8; 32],
// encryption key
R_a: EdwardsPoint,
@ -285,12 +345,15 @@ impl Alice0 {
pub fn new(
ring: [EdwardsPoint; RING_SIZE],
msg: [u8; 32],
commitment_ring: [EdwardsPoint; RING_SIZE],
pseudo_output_commitment: EdwardsPoint,
R_a: EdwardsPoint,
R_prime_a: EdwardsPoint,
s_prime_a: Scalar,
rng: &mut (impl Rng + CryptoRng),
) -> Result<Self> {
let ring = Ring::new(ring);
let commitment_ring = Ring::new(commitment_ring);
let mut fake_responses = [Scalar::zero(); RING_SIZE - 1];
for response in fake_responses.iter_mut().take(RING_SIZE - 1) {
@ -308,6 +371,8 @@ impl Alice0 {
Ok(Alice0 {
ring,
fake_responses,
commitment_ring,
pseudo_output_commitment,
msg,
R_a,
R_prime_a,
@ -334,19 +399,20 @@ impl Alice0 {
}
}
pub fn receive(self, msg: Message1) -> Result<Alice1> {
// TODO: Pass commitment-related data as an argument to this function, like z
pub fn receive(self, msg: Message1, z: Scalar) -> Result<Alice1> {
msg.pi_b
.verify(ED25519_BASEPOINT_POINT, msg.T_b, self.H_p_pk, msg.I_hat_b)?;
let (h_last, h_0) = final_challenge(
self.fake_responses,
self.ring,
self.T_a,
msg.T_b,
self.R_a,
self.I_hat_a,
msg.I_hat_b,
self.R_prime_a,
self.commitment_ring,
self.H_p_pk,
self.pseudo_output_commitment,
z,
self.T_a + msg.T_b + self.R_a,
self.I_hat_a + msg.I_hat_b + self.R_prime_a,
self.I_a + msg.I_b,
&self.msg,
)?;
@ -356,12 +422,12 @@ impl Alice0 {
Ok(Alice1 {
fake_responses: self.fake_responses,
h_0,
I_b: msg.I_b,
s_0_a,
I_a: self.I_a,
I_hat_a: self.I_hat_a,
T_a: self.T_a,
h_0,
I_b: msg.I_b,
s_0_a,
})
}
}
@ -402,15 +468,13 @@ pub struct Alice2 {
}
pub struct Bob0 {
// secret index is always 0
ring: Ring,
msg: [u8; 32],
// encryption key
commitment_ring: Ring,
pseudo_output_commitment: EdwardsPoint,
R_a: EdwardsPoint,
// R'a = r_a*H_p(p_k) where p_k is the signing public key
R_prime_a: EdwardsPoint,
s_b: Scalar,
// secret value:
alpha_b: Scalar,
H_p_pk: EdwardsPoint,
I_b: EdwardsPoint,
@ -422,12 +486,15 @@ impl Bob0 {
pub fn new(
ring: [EdwardsPoint; RING_SIZE],
msg: [u8; 32],
commitment_ring: [EdwardsPoint; RING_SIZE],
pseudo_output_commitment: EdwardsPoint,
R_a: EdwardsPoint,
R_prime_a: EdwardsPoint,
s_b: Scalar,
rng: &mut (impl Rng + CryptoRng),
) -> Result<Self> {
let ring = Ring::new(ring);
let commitment_ring = Ring::new(commitment_ring);
let alpha_b = Scalar::random(rng);
@ -441,6 +508,8 @@ impl Bob0 {
Ok(Bob0 {
ring,
msg,
commitment_ring,
pseudo_output_commitment,
R_a,
R_prime_a,
s_b,
@ -456,6 +525,8 @@ impl Bob0 {
Bob1 {
ring: self.ring,
msg: self.msg,
commitment_ring: self.commitment_ring,
pseudo_output_commitment: self.pseudo_output_commitment,
R_a: self.R_a,
R_prime_a: self.R_prime_a,
s_b: self.s_b,
@ -471,15 +542,13 @@ impl Bob0 {
}
pub struct Bob1 {
// secret index is always 0
ring: Ring,
msg: [u8; 32],
// encryption key
commitment_ring: Ring,
pseudo_output_commitment: EdwardsPoint,
R_a: EdwardsPoint,
// R'a = r_a*H_p(p_k) where p_k is the signing public key
R_prime_a: EdwardsPoint,
s_b: Scalar,
// secret value:
alpha_b: Scalar,
H_p_pk: EdwardsPoint,
I_b: EdwardsPoint,
@ -506,7 +575,8 @@ impl Bob1 {
}
}
pub fn receive(self, msg: Message2) -> Result<Bob2> {
// TODO: Pass commitment-related data as an argument to this function, like z
pub fn receive(self, msg: Message2, z: Scalar) -> Result<Bob2> {
let (fake_responses, I_a, I_hat_a, T_a) = msg.d_a.open(self.c_a)?;
self.pi_a
@ -515,12 +585,12 @@ impl Bob1 {
let (h_last, h_0) = final_challenge(
fake_responses,
self.ring,
T_a,
self.T_b,
self.R_a,
I_hat_a,
self.I_hat_b,
self.R_prime_a,
self.commitment_ring,
self.H_p_pk,
self.pseudo_output_commitment,
z,
T_a + self.T_b + self.R_a,
I_hat_a + self.I_hat_b + self.R_prime_a,
I_a + self.I_b,
&self.msg,
)?;
@ -569,7 +639,7 @@ impl DleqProof {
let rG = r * G;
let rH = r * H;
let mut keccak = tiny_keccak::Keccak::v256();
let mut keccak = Keccak::v256();
keccak.update(G.compress().as_bytes());
keccak.update(xG.compress().as_bytes());
keccak.update(H.compress().as_bytes());
@ -600,7 +670,7 @@ impl DleqProof {
let rG = (s * G) + (-c * xG);
let rH = (s * H) + (-c * xH);
let mut keccak = tiny_keccak::Keccak::v256();
let mut keccak = Keccak::v256();
keccak.update(G.compress().as_bytes());
keccak.update(xG.compress().as_bytes());
keccak.update(H.compress().as_bytes());
@ -636,7 +706,7 @@ impl Commitment {
.flat_map(|r| r.as_bytes().to_vec())
.collect::<Vec<u8>>();
let mut keccak = tiny_keccak::Keccak::v256();
let mut keccak = Keccak::v256();
keccak.update(&fake_responses);
keccak.update(I_a.compress().as_bytes());
keccak.update(I_hat_a.compress().as_bytes());
@ -747,21 +817,53 @@ mod tests {
ring[1..].fill_with(|| {
let x = Scalar::random(&mut OsRng);
x * ED25519_BASEPOINT_POINT
});
let alice = Alice0::new(ring, *msg_to_sign, R_a, R_prime_a, s_prime_a, &mut OsRng).unwrap();
let bob = Bob0::new(ring, *msg_to_sign, R_a, R_prime_a, s_b, &mut OsRng).unwrap();
let mut commitment_ring = [EdwardsPoint::default(); RING_SIZE];
let real_commitment_blinding = Scalar::random(&mut OsRng);
commitment_ring[0] = real_commitment_blinding * ED25519_BASEPOINT_POINT; // + 0 * H
commitment_ring[1..].fill_with(|| {
let x = Scalar::random(&mut OsRng);
x * ED25519_BASEPOINT_POINT
});
// TODO: document
let pseudo_output_commitment = commitment_ring[0];
let alice = Alice0::new(
ring,
*msg_to_sign,
commitment_ring,
pseudo_output_commitment,
R_a,
R_prime_a,
s_prime_a,
&mut OsRng,
)
.unwrap();
let bob = Bob0::new(
ring,
*msg_to_sign,
commitment_ring,
pseudo_output_commitment,
R_a,
R_prime_a,
s_b,
&mut OsRng,
)
.unwrap();
let msg = alice.next_message(&mut OsRng);
let bob = bob.receive(msg);
// TODO: Document this
let msg = bob.next_message(&mut OsRng);
let alice = alice.receive(msg).unwrap();
let alice = alice.receive(msg, Scalar::zero()).unwrap();
let msg = alice.next_message();
let bob = bob.receive(msg).unwrap();
let bob = bob.receive(msg, Scalar::zero()).unwrap();
let msg = bob.next_message();
let alice = alice.receive(msg);

View File

@ -2,6 +2,7 @@ use std::ops::Index;
use curve25519_dalek::edwards::EdwardsPoint;
#[derive(Clone)]
pub struct Ring {
elements: [EdwardsPoint; 11],
bytes: [u8; 32 * 11],

View File

@ -1,7 +1,7 @@
#![allow(non_snake_case)]
use curve25519_dalek::constants::ED25519_BASEPOINT_POINT;
use curve25519_dalek::edwards::EdwardsPoint;
use curve25519_dalek::edwards::{CompressedEdwardsY, EdwardsPoint};
use curve25519_dalek::scalar::Scalar;
use hash_edwards_to_edwards::hash_point_to_point;
use monero::blockdata::transaction::{ExtraField, KeyImage, SubField, TxOutTarget};
@ -210,18 +210,13 @@ async fn monerod_integration_test() {
.get_rvn_scalar(our_output.index)
.scalar;
let (adaptor_sig, adaptor) =
single_party_adaptor_sig(s_prime_a, s_b, ring, &prefix.hash().to_bytes(), &mut rng);
let sig = adaptor_sig.adapt(adaptor);
// let pseudo_out = {
// let lock_amount = Scalar::from(lock_amount);
//
// (out_blinding * ED25519_BASEPOINT_POINT) + (lock_amount *
// H.point.decompress().unwrap()) };
monero::verify_bulletproof(&mut thread_rng(), bulletproof.clone(), out_pk.clone()).unwrap();
let commitment_ring = response
.outs
.iter()
.map(|out| CompressedEdwardsY(out.mask.key).decompress().unwrap())
.collect::<Vec<_>>()
.try_into()
.unwrap();
let out_pk = out_pk
.into_iter()
@ -232,6 +227,25 @@ async fn monerod_integration_test() {
let pseudo_out = fee_key + out_pk[0].decompress().unwrap() + out_pk[1].decompress().unwrap();
let (_, real_commitment_blinder) = transaction.clone().rct_signatures.sig.unwrap().ecdh_info
[our_output.index]
.open_commitment(&viewpair, &our_output.tx_pubkey, our_output.index);
let (adaptor_sig, adaptor) = single_party_adaptor_sig(
s_prime_a,
s_b,
ring,
commitment_ring,
pseudo_out,
real_commitment_blinder,
out_blinding_0 + out_blinding_1, /* TODO: These haven't been multiplied by 8. Is that
* correct? */
&prefix.hash().to_bytes(),
&mut rng,
);
let sig = adaptor_sig.adapt(adaptor);
let out_pk = out_pk
.iter()
.map(|c| monero::util::ringct::CtKey {
@ -280,6 +294,10 @@ fn single_party_adaptor_sig(
s_prime_a: Scalar,
s_b: Scalar,
ring: [EdwardsPoint; monero_adaptor::RING_SIZE],
commitment_ring: [EdwardsPoint; monero_adaptor::RING_SIZE],
pseudo_output_commitment: EdwardsPoint,
real_commitment_blinding: Scalar,
pseudo_output_commitment_blinding: Scalar,
msg: &[u8; 32],
rng: &mut (impl Rng + CryptoRng),
) -> (monero_adaptor::AdaptorSignature, Scalar) {
@ -294,17 +312,39 @@ fn single_party_adaptor_sig(
(r_a, R_a, R_prime_a)
};
let alice = monero_adaptor::Alice0::new(ring, *msg, R_a, R_prime_a, s_prime_a, rng).unwrap();
let bob = monero_adaptor::Bob0::new(ring, *msg, R_a, R_prime_a, s_b, rng).unwrap();
let alice = monero_adaptor::Alice0::new(
ring,
*msg,
commitment_ring,
pseudo_output_commitment,
R_a,
R_prime_a,
s_prime_a,
rng,
)
.unwrap();
let bob = monero_adaptor::Bob0::new(
ring,
*msg,
commitment_ring,
pseudo_output_commitment,
R_a,
R_prime_a,
s_b,
rng,
)
.unwrap();
let msg = alice.next_message(rng);
let bob = bob.receive(msg);
let z = real_commitment_blinding - pseudo_output_commitment_blinding;
let msg = bob.next_message(rng);
let alice = alice.receive(msg).unwrap();
let alice = alice.receive(msg, z).unwrap();
let msg = alice.next_message();
let bob = bob.receive(msg).unwrap();
let bob = bob.receive(msg, z).unwrap();
let msg = bob.next_message();
let alice = alice.receive(msg);