web3-starter-py/web2-projects/other-puzzles/falling-rain-On.py
2024-03-14 20:38:16 +01:00

73 lines
No EOL
2 KiB
Python

#!/usr/bin/env python3
'''
We wish to compute the total amount of water that will be held by some
topography when an infinite amount of evenly-distributed water is poured
on it from above. The topography is represented by a sequence of integers
describing the height of each unit-width section of terrain, from left to
right. Your solution will return the total amount of width-times-height
retained by the terrain. You may assume that heights are non-negative integers.
Solution by Mia Stein
'''
def _create_wall_array(size) -> list:
return [None for _ in range(size)]
def _get_tallest_wall(wall1, wall2) -> int:
return (max(wall1, wall2))
def _get_water_filling(left_wall, right_wall, middle) -> int:
return min(left_wall, right_wall) - middle
def maxWater(arr) -> int:
"""
Return the maximum water that can be stored
Input: arr (an array of positive integers)
Output: res (a positive integer)
"""
res = 0
n = len(arr)
left_wall = _create_wall_array(n)
right_wall = _create_wall_array(n)
left_wall[0], right_wall[n - 1] = arr[0], arr[n - 1]
# Come from left
for i in range(1, n):
left_wall[i] = _get_tallest_wall(left_wall[i - 1], arr[i])
# Come from right
for i in range(n - 2, -1, -1):
right_wall[i] = _get_tallest_wall(right_wall[i + 1], arr[i]);
# Get water inside
for i in range(n):
res += _get_water_filling(left_wall[i], right_wall[i], arr[i])
return res
# Test 1
arr1 = [0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1]
print(f'Solution for {arr1} is {maxWater(arr1)} (and should be 6)')
# Test 2
arr2 = [2, 0, 2]
print(f'Solution for {arr2} is {maxWater(arr2)} (and should be 2)')
# Test 3
arr3 = [3, 0, 2, 0, 4]
print(f'Solution for {arr3} is {maxWater(arr3)} (and should be 7)')
# Test 4
arr4 = [0, 0, 0, 0]
print(f'Solution for {arr4} is {maxWater(arr4)} (and should be 0)')
# Test 5
arr5 = [5, 5, 5]
print(f'Solution for {arr5} is {maxWater(arr5)} (and should be 0)')