mirror of
https://gitlab.com/veilid/veilidchat.git
synced 2024-10-01 06:55:46 -04:00
487 lines
16 KiB
Dart
487 lines
16 KiB
Dart
import 'dart:async';
|
|
import 'package:mutex/mutex.dart';
|
|
import 'package:test/test.dart';
|
|
|
|
//################################################################
|
|
|
|
class RWTester {
|
|
int _operation = 0;
|
|
final _operationSequences = <int>[];
|
|
|
|
/// Execution sequence of the operations done.
|
|
///
|
|
/// Each element corresponds to the position of the initial execution
|
|
/// order of the read/write operation future.
|
|
List<int> get operationSequences => _operationSequences;
|
|
|
|
ReadWriteMutex mutex = ReadWriteMutex();
|
|
|
|
/// Set to true to print out read/write to the balance during deposits
|
|
static const bool debugOutput = false;
|
|
|
|
final DateTime _startTime = DateTime.now();
|
|
|
|
void _debugPrint(String message) {
|
|
if (debugOutput) {
|
|
final t = DateTime.now().difference(_startTime).inMilliseconds;
|
|
// ignore: avoid_print
|
|
print('$t: $message');
|
|
}
|
|
}
|
|
|
|
void reset() {
|
|
_operationSequences.clear();
|
|
_debugPrint('reset');
|
|
}
|
|
|
|
/// Waits [startDelay] and then invokes critical section with mutex.
|
|
///
|
|
/// Writes to [_operationSequences]. If the readwrite locks are respected
|
|
/// then the final state of the list will be in ascending order.
|
|
Future<void> writing(int startDelay, int sequence, int endDelay) async {
|
|
await Future<void>.delayed(Duration(milliseconds: startDelay));
|
|
|
|
await mutex.protectWrite(() async {
|
|
final op = ++_operation;
|
|
_debugPrint('[$op] write start: <- $_operationSequences');
|
|
final tmp = _operationSequences;
|
|
expect(mutex.isWriteLocked, isTrue);
|
|
expect(_operationSequences, orderedEquals(tmp));
|
|
// Add the position of operation to the list of operations.
|
|
_operationSequences.add(sequence); // add position to list
|
|
expect(mutex.isWriteLocked, isTrue);
|
|
await Future<void>.delayed(Duration(milliseconds: endDelay));
|
|
_debugPrint('[$op] write finish: -> $_operationSequences');
|
|
});
|
|
}
|
|
|
|
/// Waits [startDelay] and then invokes critical section with mutex.
|
|
///
|
|
///
|
|
Future<void> reading(int startDelay, int sequence, int endDelay) async {
|
|
await Future<void>.delayed(Duration(milliseconds: startDelay));
|
|
|
|
await mutex.protectRead(() async {
|
|
final op = ++_operation;
|
|
_debugPrint('[$op] read start: <- $_operationSequences');
|
|
expect(mutex.isReadLocked, isTrue);
|
|
_operationSequences.add(sequence); // add position to list
|
|
await Future<void>.delayed(Duration(milliseconds: endDelay));
|
|
_debugPrint('[$op] read finish: <- $_operationSequences');
|
|
});
|
|
}
|
|
}
|
|
|
|
//################################################################
|
|
|
|
//----------------------------------------------------------------
|
|
|
|
void main() {
|
|
final account = RWTester();
|
|
|
|
setUp(account.reset);
|
|
|
|
test('multiple read locks', () async {
|
|
await Future.wait([
|
|
account.reading(0, 1, 1000),
|
|
account.reading(0, 2, 900),
|
|
account.reading(0, 3, 800),
|
|
account.reading(0, 4, 700),
|
|
account.reading(0, 5, 600),
|
|
account.reading(0, 6, 500),
|
|
account.reading(0, 7, 400),
|
|
account.reading(0, 8, 300),
|
|
account.reading(0, 9, 200),
|
|
account.reading(0, 10, 100),
|
|
]);
|
|
// The first future acquires the lock first and waits the longest to give it
|
|
// up. This should however not block any of the other read operations
|
|
// as such the reads should finish in ascending orders.
|
|
expect(
|
|
account.operationSequences,
|
|
orderedEquals(<int>[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
|
|
);
|
|
});
|
|
|
|
test('multiple write locks', () async {
|
|
await Future.wait([
|
|
account.writing(0, 1, 100),
|
|
account.writing(0, 2, 100),
|
|
account.writing(0, 3, 100),
|
|
]);
|
|
// The first future writes first and holds the lock until 100 ms
|
|
// Even though the second future starts execution, the lock cannot be
|
|
// acquired until it is released by the first future.
|
|
// Therefore the sequence of operations will be in ascending order
|
|
// of the futures.
|
|
expect(
|
|
account.operationSequences,
|
|
orderedEquals(<int>[1, 2, 3]),
|
|
);
|
|
});
|
|
|
|
test('acquireWrite() before acquireRead()', () async {
|
|
const lockTimeout = Duration(milliseconds: 100);
|
|
|
|
final mutex = ReadWriteMutex();
|
|
|
|
await mutex.acquireWrite();
|
|
expect(mutex.isReadLocked, equals(false));
|
|
expect(mutex.isWriteLocked, equals(true));
|
|
|
|
// Since there is a write lock existing, a read lock cannot be acquired.
|
|
final readLock = mutex.acquireRead().timeout(lockTimeout);
|
|
expect(
|
|
() async => readLock,
|
|
throwsA(isA<TimeoutException>()),
|
|
);
|
|
});
|
|
|
|
test('acquireRead() before acquireWrite()', () async {
|
|
const lockTimeout = Duration(milliseconds: 100);
|
|
|
|
final mutex = ReadWriteMutex();
|
|
|
|
await mutex.acquireRead();
|
|
expect(mutex.isReadLocked, equals(true));
|
|
expect(mutex.isWriteLocked, equals(false));
|
|
|
|
// Since there is a read lock existing, a write lock cannot be acquired.
|
|
final writeLock = mutex.acquireWrite().timeout(lockTimeout);
|
|
expect(
|
|
() async => writeLock,
|
|
throwsA(isA<TimeoutException>()),
|
|
);
|
|
});
|
|
|
|
test('mixture of read write locks execution order', () async {
|
|
await Future.wait([
|
|
account.reading(0, 1, 100),
|
|
account.reading(10, 2, 100),
|
|
account.reading(20, 3, 100),
|
|
account.writing(30, 4, 100),
|
|
account.writing(40, 5, 100),
|
|
account.writing(50, 6, 100),
|
|
]);
|
|
|
|
expect(
|
|
account.operationSequences,
|
|
orderedEquals(<int>[1, 2, 3, 4, 5, 6]),
|
|
);
|
|
});
|
|
|
|
group('protectRead', () {
|
|
test('lock obtained and released on success', () async {
|
|
final m = ReadWriteMutex();
|
|
|
|
await m.protectRead(() async {
|
|
// critical section
|
|
expect(m.isLocked, isTrue);
|
|
});
|
|
expect(m.isLocked, isFalse);
|
|
});
|
|
|
|
test('value returned from critical section', () async {
|
|
// These are the normal scenario of the critical section running
|
|
// successfully. It tests different return types from the
|
|
// critical section.
|
|
|
|
final m = ReadWriteMutex();
|
|
|
|
// returns Future<void>
|
|
await m.protectRead<void>(() async {});
|
|
|
|
// returns Future<int>
|
|
final number = await m.protectRead<int>(() async => 42);
|
|
expect(number, equals(42));
|
|
|
|
// returns Future<int?> completes with value
|
|
final optionalNumber = await m.protectRead<int?>(() async => 1024);
|
|
expect(optionalNumber, equals(1024));
|
|
|
|
// returns Future<int?> completes with null
|
|
final optionalNumberNull = await m.protectRead<int?>(() async => null);
|
|
expect(optionalNumberNull, isNull);
|
|
|
|
// returns Future<String>
|
|
final word = await m.protectRead<String>(() async => 'foobar');
|
|
expect(word, equals('foobar'));
|
|
|
|
// returns Future<String?> completes with value
|
|
final optionalWord = await m.protectRead<String?>(() async => 'baz');
|
|
expect(optionalWord, equals('baz'));
|
|
|
|
// returns Future<String?> completes with null
|
|
final optionalWordNull = await m.protectRead<String?>(() async => null);
|
|
expect(optionalWordNull, isNull);
|
|
|
|
expect(m.isLocked, isFalse);
|
|
});
|
|
|
|
test('exception in synchronous code', () async {
|
|
// Tests what happens when an exception is raised in the **synchronous**
|
|
// part of the critical section.
|
|
//
|
|
// Locks are correctly managed: the lock is obtained before executing
|
|
// the critical section, and is released when the exception is thrown
|
|
// by the _protect_ method.
|
|
//
|
|
// The exception is raised when waiting for the Future returned by
|
|
// _protect_ to complete. Even though the exception is synchronously
|
|
// raised by the critical section, it won't be thrown when _protect_
|
|
// is invoked. The _protect_ method always successfully returns a
|
|
// _Future_.
|
|
|
|
Future<int> criticalSection() {
|
|
final c = Completer<int>()..complete(42);
|
|
|
|
// synchronous exception
|
|
throw const FormatException('synchronous exception');
|
|
// ignore: dead_code
|
|
return c.future;
|
|
}
|
|
|
|
// Check the criticalSection behaves as expected for the test
|
|
|
|
try {
|
|
// ignore: unused_local_variable
|
|
final resultFuture = criticalSection();
|
|
fail('critical section did not throw synchronous exception');
|
|
} on FormatException {
|
|
// expected: invoking the criticalSection results in the exception
|
|
}
|
|
|
|
final m = ReadWriteMutex();
|
|
|
|
try {
|
|
// Invoke protect to get the Future (this should succeed)
|
|
final resultFuture = m.protectRead<int>(criticalSection);
|
|
expect(resultFuture, isA<Future<int>>());
|
|
|
|
// Wait for the Future (this should fail)
|
|
final result = await resultFuture;
|
|
expect(result, isNotNull);
|
|
fail('exception not thrown');
|
|
} on FormatException catch (e) {
|
|
expect(m.isLocked, isFalse);
|
|
expect(e.message, equals('synchronous exception'));
|
|
}
|
|
|
|
expect(m.isLocked, isFalse);
|
|
});
|
|
|
|
test('exception in asynchronous code', () async {
|
|
// Tests what happens when an exception is raised in the **asynchronous**
|
|
// part of the critical section.
|
|
//
|
|
// Locks are correctly managed: the lock is obtained before executing
|
|
// the critical section, and is released when the exception is thrown
|
|
// by the _protect_ method.
|
|
//
|
|
// The exception is raised when waiting for the Future returned by
|
|
// _protect_ to complete.
|
|
|
|
Future<int> criticalSection() async {
|
|
final c = Completer<int>()..complete(42);
|
|
|
|
await Future.delayed(const Duration(seconds: 1), () {});
|
|
|
|
// asynchronous exception (since it must wait for the above line)
|
|
throw const FormatException('asynchronous exception');
|
|
// ignore: dead_code
|
|
return c.future;
|
|
}
|
|
|
|
// Check the criticalSection behaves as expected for the test
|
|
|
|
final resultFuture = criticalSection();
|
|
expect(resultFuture, isA<Future<int>>());
|
|
// invoking the criticalSection does not result in the exception
|
|
try {
|
|
await resultFuture;
|
|
fail('critical section did not throw asynchronous exception');
|
|
} on FormatException {
|
|
// expected: exception happens on the await
|
|
}
|
|
|
|
final m = ReadWriteMutex();
|
|
|
|
try {
|
|
// Invoke protect to get the Future (this should succeed)
|
|
final resultFuture = m.protectRead<int>(criticalSection);
|
|
expect(resultFuture, isA<Future<int>>());
|
|
|
|
// Even though the criticalSection throws the exception in synchronous
|
|
// code, protect causes it to become an asynchronous exception.
|
|
|
|
// Wait for the Future (this should fail)
|
|
final result = await resultFuture;
|
|
expect(result, isNotNull);
|
|
fail('exception not thrown');
|
|
} on FormatException catch (e) {
|
|
expect(m.isLocked, isFalse);
|
|
expect(e.message, equals('asynchronous exception'));
|
|
}
|
|
|
|
expect(m.isLocked, isFalse);
|
|
});
|
|
});
|
|
|
|
group('protectWrite', () {
|
|
test('lock obtained and released on success', () async {
|
|
final m = ReadWriteMutex();
|
|
|
|
await m.protectWrite(() async {
|
|
// critical section
|
|
expect(m.isLocked, isTrue);
|
|
});
|
|
expect(m.isLocked, isFalse);
|
|
});
|
|
|
|
test('value returned from critical section', () async {
|
|
// These are the normal scenario of the critical section running
|
|
// successfully. It tests different return types from the
|
|
// critical section.
|
|
|
|
final m = ReadWriteMutex();
|
|
|
|
// returns Future<void>
|
|
await m.protectWrite<void>(() async {});
|
|
|
|
// returns Future<int>
|
|
final number = await m.protectWrite<int>(() async => 42);
|
|
expect(number, equals(42));
|
|
|
|
// returns Future<int?> completes with value
|
|
final optionalNumber = await m.protectWrite<int?>(() async => 1024);
|
|
expect(optionalNumber, equals(1024));
|
|
|
|
// returns Future<int?> completes with null
|
|
final optionalNumberNull = await m.protectWrite<int?>(() async => null);
|
|
expect(optionalNumberNull, isNull);
|
|
|
|
// returns Future<String>
|
|
final word = await m.protectWrite<String>(() async => 'foobar');
|
|
expect(word, equals('foobar'));
|
|
|
|
// returns Future<String?> completes with value
|
|
final optionalWord = await m.protectWrite<String?>(() async => 'baz');
|
|
expect(optionalWord, equals('baz'));
|
|
|
|
// returns Future<String?> completes with null
|
|
final optionalWordNull = await m.protectWrite<String?>(() async => null);
|
|
expect(optionalWordNull, isNull);
|
|
|
|
expect(m.isLocked, isFalse);
|
|
});
|
|
|
|
test('exception in synchronous code', () async {
|
|
// Tests what happens when an exception is raised in the **synchronous**
|
|
// part of the critical section.
|
|
//
|
|
// Locks are correctly managed: the lock is obtained before executing
|
|
// the critical section, and is released when the exception is thrown
|
|
// by the _protect_ method.
|
|
//
|
|
// The exception is raised when waiting for the Future returned by
|
|
// _protect_ to complete. Even though the exception is synchronously
|
|
// raised by the critical section, it won't be thrown when _protect_
|
|
// is invoked. The _protect_ method always successfully returns a
|
|
// _Future_.
|
|
|
|
Future<int> criticalSection() {
|
|
final c = Completer<int>()..complete(42);
|
|
|
|
// synchronous exception
|
|
throw const FormatException('synchronous exception');
|
|
// ignore: dead_code
|
|
return c.future;
|
|
}
|
|
|
|
// Check the criticalSection behaves as expected for the test
|
|
|
|
try {
|
|
// ignore: unused_local_variable
|
|
final resultFuture = criticalSection();
|
|
fail('critical section did not throw synchronous exception');
|
|
} on FormatException {
|
|
// expected: invoking the criticalSection results in the exception
|
|
}
|
|
|
|
final m = ReadWriteMutex();
|
|
|
|
try {
|
|
// Invoke protect to get the Future (this should succeed)
|
|
final resultFuture = m.protectWrite<int>(criticalSection);
|
|
expect(resultFuture, isA<Future<int>>());
|
|
|
|
// Wait for the Future (this should fail)
|
|
final result = await resultFuture;
|
|
expect(result, isNotNull);
|
|
fail('exception not thrown');
|
|
} on FormatException catch (e) {
|
|
expect(m.isLocked, isFalse);
|
|
expect(e.message, equals('synchronous exception'));
|
|
}
|
|
|
|
expect(m.isLocked, isFalse);
|
|
});
|
|
|
|
test('exception in asynchronous code', () async {
|
|
// Tests what happens when an exception is raised in the **asynchronous**
|
|
// part of the critical section.
|
|
//
|
|
// Locks are correctly managed: the lock is obtained before executing
|
|
// the critical section, and is released when the exception is thrown
|
|
// by the _protect_ method.
|
|
//
|
|
// The exception is raised when waiting for the Future returned by
|
|
// _protect_ to complete.
|
|
|
|
Future<int> criticalSection() async {
|
|
final c = Completer<int>()..complete(42);
|
|
|
|
await Future.delayed(const Duration(seconds: 1), () {});
|
|
|
|
// asynchronous exception (since it must wait for the above line)
|
|
throw const FormatException('asynchronous exception');
|
|
// ignore: dead_code
|
|
return c.future;
|
|
}
|
|
|
|
// Check the criticalSection behaves as expected for the test
|
|
|
|
final resultFuture = criticalSection();
|
|
expect(resultFuture, isA<Future<int>>());
|
|
// invoking the criticalSection does not result in the exception
|
|
try {
|
|
await resultFuture;
|
|
fail('critical section did not throw asynchronous exception');
|
|
} on FormatException {
|
|
// expected: exception happens on the await
|
|
}
|
|
|
|
final m = ReadWriteMutex();
|
|
|
|
try {
|
|
// Invoke protect to get the Future (this should succeed)
|
|
final resultFuture = m.protectWrite<int>(criticalSection);
|
|
expect(resultFuture, isA<Future<int>>());
|
|
|
|
// Even though the criticalSection throws the exception in synchronous
|
|
// code, protect causes it to become an asynchronous exception.
|
|
|
|
// Wait for the Future (this should fail)
|
|
final result = await resultFuture;
|
|
expect(result, isNotNull);
|
|
fail('exception not thrown');
|
|
} on FormatException catch (e) {
|
|
expect(m.isLocked, isFalse);
|
|
expect(e.message, equals('asynchronous exception'));
|
|
}
|
|
|
|
expect(m.isLocked, isFalse);
|
|
});
|
|
});
|
|
}
|