veilidchat/packages/mutex/test/mutex_test.dart

342 lines
11 KiB
Dart
Raw Normal View History

2024-02-11 00:29:58 -05:00
import 'dart:async';
import 'package:mutex/mutex.dart';
import 'package:test/test.dart';
//################################################################
/// Account simulating the classic "simultaneous update" concurrency problem.
///
/// The deposit operation reads the balance, waits for a short time (where
/// problems can occur if the balance is changed) and then writes out the
/// new balance.
///
class Account {
int get balance => _balance;
int _balance = 0;
int _operation = 0;
Mutex mutex = Mutex();
/// Set to true to print out read/write to the balance during deposits
static const bool debugOutput = false;
/// Time used for calculating time offsets in debug messages.
final DateTime _startTime = DateTime.now();
void _debugPrint(String message) {
if (debugOutput) {
final t = DateTime.now().difference(_startTime).inMilliseconds;
// ignore: avoid_print
print('$t: $message');
}
}
void reset([int startingBalance = 0]) {
_balance = startingBalance;
_debugPrint('reset: balance = $_balance');
}
/// Waits [startDelay] and then invokes critical section without mutex.
///
Future<void> depositUnsafe(
int amount, int startDelay, int dangerWindow) async {
await Future<void>.delayed(Duration(milliseconds: startDelay));
await _depositCriticalSection(amount, dangerWindow);
}
/// Waits [startDelay] and then invokes critical section with mutex.
///
Future<void> depositWithMutex(
int amount, int startDelay, int dangerWindow) async {
await Future<void>.delayed(Duration(milliseconds: startDelay));
await mutex.acquire();
try {
expect(mutex.isLocked, isTrue);
await _depositCriticalSection(amount, dangerWindow);
expect(mutex.isLocked, isTrue);
} finally {
mutex.release();
}
}
/// Critical section of adding [amount] to the balance.
///
/// Reads the balance, then sleeps for [dangerWindow] milliseconds, before
/// saving the new balance. If not protected, another invocation of this
/// method while it is sleeping will read the balance before it is updated.
/// The one that saves its balance last will overwrite the earlier saved
/// balances (effectively those other deposits will be lost).
///
Future<void> _depositCriticalSection(int amount, int dangerWindow) async {
final op = ++_operation;
_debugPrint('[$op] read balance: $_balance');
final tmp = _balance;
await Future<void>.delayed(Duration(milliseconds: dangerWindow));
_balance = tmp + amount;
_debugPrint('[$op] write balance: $_balance (= $tmp + $amount)');
}
}
//################################################################
//----------------------------------------------------------------
void main() {
const correctBalance = 68;
final account = Account();
test('without mutex', () async {
// First demonstrate that without mutex incorrect results are produced.
// Without mutex produces incorrect result
// 000. a reads 0
// 025. b reads 0
// 050. a writes 42
// 075. b writes 26
account.reset();
await Future.wait<void>([
account.depositUnsafe(42, 0, 50),
account.depositUnsafe(26, 25, 50) // result overwrites first deposit
]);
expect(account.balance, equals(26)); // incorrect: first deposit lost
// Without mutex produces incorrect result
// 000. b reads 0
// 025. a reads 0
// 050. b writes 26
// 075. a writes 42
account.reset();
await Future.wait([
account.depositUnsafe(42, 25, 50), // result overwrites second deposit
account.depositUnsafe(26, 0, 50)
]);
expect(account.balance, equals(42)); // incorrect: second deposit lost
});
test('with mutex', () async {
// Test correct results are produced with mutex
// With mutex produces correct result
// 000. a acquires lock
// 000. a reads 0
// 025. b is blocked
// 050. a writes 42
// 050. a releases lock
// 050. b acquires lock
// 050. b reads 42
// 100. b writes 68
account.reset();
await Future.wait([
account.depositWithMutex(42, 0, 50),
account.depositWithMutex(26, 25, 50)
]);
expect(account.balance, equals(correctBalance));
// With mutex produces correct result
// 000. b acquires lock
// 000. b reads 0
// 025. a is blocked
// 050. b writes 26
// 050. b releases lock
// 050. a acquires lock
// 050. a reads 26
// 100. a writes 68
account.reset();
await Future.wait([
account.depositWithMutex(42, 25, 50),
account.depositWithMutex(26, 0, 50)
]);
expect(account.balance, equals(correctBalance));
});
test('multiple acquires are serialized', () async {
// Demonstrate that sections running in a mutex are effectively serialized
const delay = 200; // milliseconds
account.reset();
await Future.wait([
account.depositWithMutex(1, 0, delay),
account.depositWithMutex(1, 0, delay),
account.depositWithMutex(1, 0, delay),
account.depositWithMutex(1, 0, delay),
account.depositWithMutex(1, 0, delay),
account.depositWithMutex(1, 0, delay),
account.depositWithMutex(1, 0, delay),
account.depositWithMutex(1, 0, delay),
account.depositWithMutex(1, 0, delay),
account.depositWithMutex(1, 0, delay),
]);
expect(account.balance, equals(10));
});
group('protect', () {
test('lock obtained and released on success', () async {
// This is the normal scenario of the critical section running
// successfully. The lock is acquired before running the critical
// section, and it is released after it runs (and will remain
// unlocked after the _protect_ method returns).
final m = Mutex();
await m.protect(() async {
// critical section: returns Future<void>
expect(m.isLocked, isTrue);
});
expect(m.isLocked, isFalse);
});
test('value returned from critical section', () async {
// These are the normal scenario of the critical section running
// successfully. It tests different return types from the
// critical section.
final m = Mutex();
// returns Future<void>
await m.protect<void>(() async {});
// returns Future<int>
final number = await m.protect<int>(() async => 42);
expect(number, equals(42));
// returns Future<int?> completes with value
final optionalNumber = await m.protect<int?>(() async => 1024);
expect(optionalNumber, equals(1024));
// returns Future<int?> completes with null
final optionalNumberNull = await m.protect<int?>(() async => null);
expect(optionalNumberNull, isNull);
// returns Future<String>
final word = await m.protect<String>(() async => 'foobar');
expect(word, equals('foobar'));
// returns Future<String?> completes with value
final optionalWord = await m.protect<String?>(() async => 'baz');
expect(optionalWord, equals('baz'));
// returns Future<String?> completes with null
final optionalWordNull = await m.protect<String?>(() async => null);
expect(optionalWordNull, isNull);
expect(m.isLocked, isFalse);
});
test('exception in synchronous code', () async {
// Tests what happens when an exception is raised in the **synchronous**
// part of the critical section.
//
// Locks are correctly managed: the lock is obtained before executing
// the critical section, and is released when the exception is thrown
// by the _protect_ method.
//
// The exception is raised when waiting for the Future returned by
// _protect_ to complete. Even though the exception is synchronously
// raised by the critical section, it won't be thrown when _protect_
// is invoked. The _protect_ method always successfully returns a
// _Future_.
Future<int> criticalSection() {
final c = Completer<int>()..complete(42);
// synchronous exception
throw const FormatException('synchronous exception');
// ignore: dead_code
return c.future;
}
// Check the criticalSection behaves as expected for the test
try {
// ignore: unused_local_variable
final resultFuture = criticalSection();
fail('critical section did not throw synchronous exception');
} on FormatException {
// expected: invoking the criticalSection results in the exception
}
final m = Mutex();
try {
// Invoke protect to get the Future (this should succeed)
final resultFuture = m.protect<int>(criticalSection);
expect(resultFuture, isA<Future<void>>());
// Wait for the Future (this should fail)
final result = await resultFuture;
expect(result, isNotNull);
fail('exception not thrown');
} on FormatException catch (e) {
expect(m.isLocked, isFalse);
expect(e.message, equals('synchronous exception'));
}
expect(m.isLocked, isFalse);
});
test('exception in asynchronous code', () async {
// Tests what happens when an exception is raised in the **asynchronous**
// part of the critical section.
//
// Locks are correctly managed: the lock is obtained before executing
// the critical section, and is released when the exception is thrown
// by the _protect_ method.
//
// The exception is raised when waiting for the Future returned by
// _protect_ to complete.
Future<int> criticalSection() async {
final c = Completer<int>()..complete(42);
await Future.delayed(const Duration(seconds: 1), () {});
// asynchronous exception (since it must wait for the above line)
throw const FormatException('asynchronous exception');
// ignore: dead_code
return c.future;
}
// Check the criticalSection behaves as expected for the test
final resultFuture = criticalSection();
expect(resultFuture, isA<Future<int>>());
// invoking the criticalSection does not result in the exception
try {
await resultFuture;
fail('critical section did not throw asynchronous exception');
} on FormatException {
// expected: exception happens on the await
}
final m = Mutex();
try {
// Invoke protect to get the Future (this should succeed)
final resultFuture = m.protect<int>(criticalSection);
expect(resultFuture, isA<Future<int>>());
// Even though the criticalSection throws the exception in synchronous
// code, protect causes it to become an asynchronous exception.
// Wait for the Future (this should fail)
final result = await resultFuture;
expect(result, isNotNull);
fail('exception not thrown');
} on FormatException catch (e) {
expect(m.isLocked, isFalse);
expect(e.message, equals('asynchronous exception'));
}
expect(m.isLocked, isFalse);
});
});
}