use crate::xx::*; use alloc::string::ToString; use std::path::Path; #[macro_export] macro_rules! assert_err { ($ex:expr) => { if let Ok(v) = $ex { panic!("assertion failed, expected Err(..), got {:?}", v); } }; } pub fn split_port(name: &str) -> Result<(String, Option), String> { if let Some(split) = name.rfind(':') { let hoststr = &name[0..split]; let portstr = &name[split + 1..]; let port: u16 = portstr .parse::() .map_err(|e| format!("Invalid port: {}", e))?; Ok((hoststr.to_string(), Some(port))) } else { Ok((name.to_string(), None)) } } pub fn prepend_slash(s: String) -> String { if s.starts_with('/') { return s; } let mut out = "/".to_owned(); out.push_str(s.as_str()); out } pub fn timestamp_to_secs(ts: u64) -> f64 { ts as f64 / 1000000.0f64 } pub fn secs_to_timestamp(secs: f64) -> u64 { (secs * 1000000.0f64) as u64 } pub fn ms_to_us(ms: u32) -> u64 { (ms as u64) * 1000u64 } // Calculate retry attempt with logarhythmic falloff pub fn retry_falloff_log( last_us: u64, cur_us: u64, interval_start_us: u64, interval_max_us: u64, interval_multiplier_us: f64, ) -> bool { // if cur_us < interval_start_us { // Don't require a retry within the first 'interval_start_us' microseconds of the reliable time period false } else if cur_us >= last_us + interval_max_us { // Retry at least every 'interval_max_us' microseconds true } else { // Exponential falloff between 'interval_start_us' and 'interval_max_us' microseconds last_us <= secs_to_timestamp(timestamp_to_secs(cur_us) / interval_multiplier_us) } } pub fn try_at_most_n_things(max: usize, things: I, closure: C) -> Option where I: IntoIterator, C: Fn(T) -> Option, { let mut fails = 0usize; for thing in things.into_iter() { if let Some(r) = closure(thing) { return Some(r); } fails += 1; if fails >= max { break; } } None } pub async fn async_try_at_most_n_things( max: usize, things: I, closure: C, ) -> Option where I: IntoIterator, C: Fn(T) -> F, F: Future>, { let mut fails = 0usize; for thing in things.into_iter() { if let Some(r) = closure(thing).await { return Some(r); } fails += 1; if fails >= max { break; } } None } pub trait CmpAssign { fn min_assign(&mut self, other: Self); fn max_assign(&mut self, other: Self); } impl CmpAssign for T where T: core::cmp::Ord, { fn min_assign(&mut self, other: Self) { if &other < self { *self = other; } } fn max_assign(&mut self, other: Self) { if &other > self { *self = other; } } } pub fn listen_address_to_socket_addrs(listen_address: &str) -> Result, String> { // If no address is specified, but the port is, use ipv4 and ipv6 unspecified // If the address is specified, only use the specified port and fail otherwise let ip_addrs = vec![ IpAddr::V4(Ipv4Addr::UNSPECIFIED), IpAddr::V6(Ipv6Addr::UNSPECIFIED), ]; Ok(if let Some(portstr) = listen_address.strip_prefix(':') { let port = portstr.parse::().map_err(|_| { format!( "Invalid port format in udp listen address: {}", listen_address ) })?; ip_addrs.iter().map(|a| SocketAddr::new(*a, port)).collect() } else if let Ok(port) = listen_address.parse::() { ip_addrs.iter().map(|a| SocketAddr::new(*a, port)).collect() } else { cfg_if! { if #[cfg(target_arch = "wasm32")] { use core::str::FromStr; vec![SocketAddr::from_str(listen_address).map_err(|_| format!("Unable to parse address: {}", listen_address))?] } else { listen_address .to_socket_addrs() .map_err(|_| format!("Unable to resolve address: {}", listen_address))? .collect() } } }) } pub trait Dedup { fn remove_duplicates(&mut self); } impl Dedup for Vec { fn remove_duplicates(&mut self) { let mut already_seen = Vec::new(); self.retain(|item| match already_seen.contains(item) { true => false, _ => { already_seen.push(item.clone()); true } }) } } cfg_if::cfg_if! { if #[cfg(unix)] { use std::os::unix::fs::MetadataExt; use std::os::unix::prelude::PermissionsExt; use nix::unistd::{Uid, Gid}; pub fn ensure_file_private_owner>(path: P) -> Result<(), String> { let path = path.as_ref(); if !path.exists() { return Ok(()); } let uid = Uid::effective(); let gid = Gid::effective(); let meta = std::fs::metadata(path).map_err(|e| format!("unable to get metadata for path '{:?}': {}",path, e))?; if meta.mode() != 0o600 { std::fs::set_permissions(path,std::fs::Permissions::from_mode(0o600)).map_err(|e| format!("unable to set correct permissions on path '{:?}': {}", path, e))?; } if meta.uid() != uid.as_raw() || meta.gid() != gid.as_raw() { return Err(format!("path has incorrect owner/group: {:?}", path)); } Ok(()) } } else if #[cfg(windows)] { use std::os::windows::fs::MetadataExt; use windows_permissions::*; pub fn ensure_file_private_owner>(path: P) -> Result<(),String> { let path = path.as_ref(); if !path.exists() { return Ok(()); } // let uid = Uid::effective(); // let gid = Gid::effective(); let meta = std::fs::metadata(path).map_err(|e| format!("unable to get metadata for path '{:?}': {}",path, e))?; if meta.mode() != 0o600 { std::fs::set_permissions(path,std::fs::Permissions::from_mode(0o600)).map_err(|e| format!("unable to set correct permissions on path '{:?}': {}", path, e))?; } //if meta.uid() != uid.as_raw() || meta.gid() != gid.as_raw() { // chown(path, Some(uid), Some(gid)).map_err(|e| format!("unable to set correct owner on path '{:?}': {}", path, e))?; //} Ok(()) } } else { pub fn ensure_file_private_owner>(_path: P) -> Result<(),String> { Ok(()) } } } #[repr(C, align(8))] struct AlignToEight([u8; 8]); pub unsafe fn aligned_8_u8_vec_uninit(n_bytes: usize) -> Vec { let n_units = (n_bytes + mem::size_of::() - 1) / mem::size_of::(); let mut aligned: Vec = Vec::with_capacity(n_units); let ptr = aligned.as_mut_ptr(); let cap_units = aligned.capacity(); mem::forget(aligned); Vec::from_raw_parts( ptr as *mut u8, n_bytes, cap_units * mem::size_of::(), ) }