routing table refactor

This commit is contained in:
John Smith 2022-10-18 21:53:45 -04:00
parent 63768580c6
commit 6d5df71ac1
17 changed files with 1904 additions and 1586 deletions

View File

@ -644,7 +644,7 @@ impl NetworkManager {
Ok(())
}
// Get our node's capabilities
/// Get our node's capabilities in the PublicInternet routing domain
fn generate_public_internet_node_status(&self) -> PublicInternetNodeStatus {
let node_info = self
.routing_table()
@ -664,6 +664,7 @@ impl NetworkManager {
will_validate_dial_info,
}
}
/// Get our node's capabilities in the LocalNetwork routing domain
fn generate_local_network_node_status(&self) -> LocalNetworkNodeStatus {
let node_info = self
.routing_table()
@ -689,7 +690,7 @@ impl NetworkManager {
}
}
// Generates a multi-shot/normal receipt
/// Generates a multi-shot/normal receipt
#[instrument(level = "trace", skip(self, extra_data, callback), err)]
pub fn generate_receipt<D: AsRef<[u8]>>(
&self,
@ -715,7 +716,7 @@ impl NetworkManager {
Ok(out)
}
// Generates a single-shot/normal receipt
/// Generates a single-shot/normal receipt
#[instrument(level = "trace", skip(self, extra_data), err)]
pub fn generate_single_shot_receipt<D: AsRef<[u8]>>(
&self,
@ -741,7 +742,7 @@ impl NetworkManager {
Ok((out, instance))
}
// Process a received out-of-band receipt
/// Process a received out-of-band receipt
#[instrument(level = "trace", skip(self, receipt_data), ret)]
pub async fn handle_out_of_band_receipt<R: AsRef<[u8]>>(
&self,
@ -759,7 +760,7 @@ impl NetworkManager {
receipt_manager.handle_receipt(receipt, None).await
}
// Process a received in-band receipt
/// Process a received in-band receipt
#[instrument(level = "trace", skip(self, receipt_data), ret)]
pub async fn handle_in_band_receipt<R: AsRef<[u8]>>(
&self,
@ -871,7 +872,7 @@ impl NetworkManager {
}
}
// Builds an envelope for sending over the network
/// Builds an envelope for sending over the network
#[instrument(level = "trace", skip(self, body), err)]
fn build_envelope<B: AsRef<[u8]>>(
&self,
@ -895,10 +896,10 @@ impl NetworkManager {
.wrap_err("envelope failed to encode")
}
// Called by the RPC handler when we want to issue an RPC request or response
// node_ref is the direct destination to which the envelope will be sent
// If 'node_id' is specified, it can be different than node_ref.node_id()
// which will cause the envelope to be relayed
/// Called by the RPC handler when we want to issue an RPC request or response
/// node_ref is the direct destination to which the envelope will be sent
/// If 'node_id' is specified, it can be different than node_ref.node_id()
/// which will cause the envelope to be relayed
#[instrument(level = "trace", skip(self, body), ret, err)]
pub async fn send_envelope<B: AsRef<[u8]>>(
&self,
@ -942,7 +943,7 @@ impl NetworkManager {
self.send_data(node_ref.clone(), out).await
}
// Called by the RPC handler when we want to issue an direct receipt
/// Called by the RPC handler when we want to issue an direct receipt
#[instrument(level = "trace", skip(self, rcpt_data), err)]
pub async fn send_out_of_band_receipt(
&self,
@ -967,9 +968,9 @@ impl NetworkManager {
Ok(())
}
// Send a reverse connection signal and wait for the return receipt over it
// Then send the data across the new connection
// Only usable for PublicInternet routing domain
/// Send a reverse connection signal and wait for the return receipt over it
/// Then send the data across the new connection
/// Only usable for PublicInternet routing domain
#[instrument(level = "trace", skip(self, data), err)]
pub async fn do_reverse_connect(
&self,
@ -1041,9 +1042,9 @@ impl NetworkManager {
}
}
// Send a hole punch signal and do a negotiating ping and wait for the return receipt
// Then send the data across the new connection
// Only usable for PublicInternet routing domain
/// Send a hole punch signal and do a negotiating ping and wait for the return receipt
/// Then send the data across the new connection
/// Only usable for PublicInternet routing domain
#[instrument(level = "trace", skip(self, data), err)]
pub async fn do_hole_punch(
&self,
@ -1146,15 +1147,99 @@ impl NetworkManager {
}
}
// Send raw data to a node
//
// We may not have dial info for a node, but have an existing connection for it
// because an inbound connection happened first, and no FindNodeQ has happened to that
// node yet to discover its dial info. The existing connection should be tried first
// in this case.
//
// Sending to a node requires determining a NetworkClass compatible mechanism
//
/// Figure out how to reach a node from our own node over the best routing domain and reference the nodes we want to access
/// Uses NodeRefs to ensure nodes are referenced, this is not a part of 'RoutingTable' because RoutingTable is not
/// allowed to use NodeRefs due to recursive locking
#[instrument(level = "trace", skip(self), ret)]
pub(crate) fn get_node_contact_method(
&self,
target_node_ref: NodeRef,
) -> EyreResult<NodeContactMethod> {
let routing_table = self.routing_table();
// Figure out the best routing domain to get the contact method over
let routing_domain = match target_node_ref.best_routing_domain() {
Some(rd) => rd,
None => {
log_net!("no routing domain for node {:?}", target_node_ref);
return Ok(NodeContactMethod::Unreachable);
}
};
// Node A is our own node
let node_a = routing_table.get_own_node_info(routing_domain);
let node_a_id = routing_table.node_id();
// Node B is the target node
let node_b = match target_node_ref.node_info(routing_domain) {
Some(ni) => ni,
None => {
log_net!("no node info for node {:?}", target_node_ref);
return Ok(NodeContactMethod::Unreachable);
}
};
let node_b_id = target_node_ref.node_id();
// Dial info filter comes from the target node ref
let dial_info_filter = target_node_ref.dial_info_filter();
let reliable = target_node_ref.reliable();
let cm = routing_table.get_contact_method(
routing_domain,
&node_a_id,
&node_a,
&node_b_id,
&node_b,
dial_info_filter,
reliable,
);
// Translate the raw contact method to a referenced contact method
Ok(match cm {
ContactMethod::Unreachable => NodeContactMethod::Unreachable,
ContactMethod::Existing => NodeContactMethod::Existing,
ContactMethod::Direct(di) => NodeContactMethod::Direct(di),
ContactMethod::SignalReverse(relay_key, target_key) => {
let relay_nr = routing_table
.lookup_and_filter_noderef(relay_key, routing_domain.into(), dial_info_filter)
.ok_or_else(|| eyre!("couldn't look up relay"))?;
if target_node_ref.node_id() != target_key {
bail!("target noderef didn't match target key");
}
NodeContactMethod::SignalReverse(relay_nr, target_node_ref)
}
ContactMethod::SignalHolePunch(relay_key, target_key) => {
let relay_nr = routing_table
.lookup_and_filter_noderef(relay_key, routing_domain.into(), dial_info_filter)
.ok_or_else(|| eyre!("couldn't look up relay"))?;
if target_node_ref.node_id() != target_key {
bail!("target noderef didn't match target key");
}
NodeContactMethod::SignalHolePunch(relay_nr, target_node_ref)
}
ContactMethod::InboundRelay(relay_key) => {
let relay_nr = routing_table
.lookup_and_filter_noderef(relay_key, routing_domain.into(), dial_info_filter)
.ok_or_else(|| eyre!("couldn't look up relay"))?;
NodeContactMethod::InboundRelay(relay_nr)
}
ContactMethod::OutboundRelay(relay_key) => {
let relay_nr = routing_table
.lookup_and_filter_noderef(relay_key, routing_domain.into(), dial_info_filter)
.ok_or_else(|| eyre!("couldn't look up relay"))?;
NodeContactMethod::OutboundRelay(relay_nr)
}
})
}
/// Send raw data to a node
///
/// We may not have dial info for a node, but have an existing connection for it
/// because an inbound connection happened first, and no FindNodeQ has happened to that
/// node yet to discover its dial info. The existing connection should be tried first
/// in this case.
///
/// Sending to a node requires determining a NetworkClass compatible mechanism
pub fn send_data(
&self,
node_ref: NodeRef,
@ -1201,9 +1286,7 @@ impl NetworkManager {
// info!("{}", "no existing connection".red());
// If we don't have last_connection, try to reach out to the peer via its dial info
let contact_method = this
.routing_table()
.get_node_contact_method(node_ref.clone())?;
let contact_method = this.get_node_contact_method(node_ref.clone())?;
log_net!(
"send_data via {:?} to dialinfo {:?}",
contact_method,

View File

@ -286,20 +286,10 @@ impl BucketEntryInner {
self.last_connections.clear();
}
// Gets the 'last connection' that matches a specific connection key
// pub(super) fn last_connection(
// &self,
// protocol_type: ProtocolType,
// address_type: AddressType,
// ) -> Option<(ConnectionDescriptor, u64)> {
// let key = LastConnectionKey(protocol_type, address_type);
// self.last_connections.get(&key).cloned()
// }
// Gets all the 'last connections' that match a particular filter
pub(super) fn last_connections(
&self,
routing_table_inner: &RoutingTableInner,
rti: &RoutingTableInner,
filter: Option<NodeRefFilter>,
) -> Vec<(ConnectionDescriptor, u64)> {
let mut out: Vec<(ConnectionDescriptor, u64)> = self
@ -308,10 +298,7 @@ impl BucketEntryInner {
.filter_map(|(k, v)| {
let include = if let Some(filter) = &filter {
let remote_address = v.0.remote_address().address();
if let Some(routing_domain) = RoutingTable::routing_domain_for_address_inner(
routing_table_inner,
remote_address,
) {
if let Some(routing_domain) = rti.routing_domain_for_address(remote_address) {
if filter.routing_domain_set.contains(routing_domain)
&& filter.dial_info_filter.protocol_type_set.contains(k.0)
&& filter.dial_info_filter.address_type_set.contains(k.1)

View File

@ -1,647 +0,0 @@
use super::*;
use crate::dht::*;
use crate::xx::*;
use crate::*;
pub type LowLevelProtocolPorts = BTreeSet<(LowLevelProtocolType, AddressType, u16)>;
pub type ProtocolToPortMapping = BTreeMap<(ProtocolType, AddressType), (LowLevelProtocolType, u16)>;
#[derive(Clone, Debug)]
pub struct LowLevelPortInfo {
pub low_level_protocol_ports: LowLevelProtocolPorts,
pub protocol_to_port: ProtocolToPortMapping,
}
impl RoutingTable {
// Makes a filter that finds nodes with a matching inbound dialinfo
pub fn make_inbound_dial_info_entry_filter(
routing_domain: RoutingDomain,
dial_info_filter: DialInfoFilter,
) -> impl FnMut(&RoutingTableInner, &BucketEntryInner) -> bool {
// does it have matching public dial info?
move |_rti, e| {
if let Some(ni) = e.node_info(routing_domain) {
if ni
.first_filtered_dial_info_detail(DialInfoDetail::NO_SORT, |did| {
did.matches_filter(&dial_info_filter)
})
.is_some()
{
return true;
}
}
false
}
}
// Makes a filter that finds nodes capable of dialing a particular outbound dialinfo
pub fn make_outbound_dial_info_entry_filter<'s>(
routing_domain: RoutingDomain,
dial_info: DialInfo,
) -> impl FnMut(&RoutingTableInner, &'s BucketEntryInner) -> bool {
// does the node's outbound capabilities match the dialinfo?
move |_rti, e| {
if let Some(ni) = e.node_info(routing_domain) {
let dif = DialInfoFilter::all()
.with_protocol_type_set(ni.outbound_protocols)
.with_address_type_set(ni.address_types);
if dial_info.matches_filter(&dif) {
return true;
}
}
false
}
}
// Make a filter that wraps another filter
pub fn combine_entry_filters<'a, 'b, F, G>(
mut f1: F,
mut f2: G,
) -> impl FnMut(&'a RoutingTableInner, &'b BucketEntryInner) -> bool
where
F: FnMut(&'a RoutingTableInner, &'b BucketEntryInner) -> bool,
G: FnMut(&'a RoutingTableInner, &'b BucketEntryInner) -> bool,
{
move |rti, e| {
if !f1(rti, e) {
return false;
}
if !f2(rti, e) {
return false;
}
true
}
}
// Retrieve the fastest nodes in the routing table matching an entry filter
pub fn find_fast_public_nodes_filtered<'a, 'b, F>(
&self,
node_count: usize,
mut entry_filter: F,
) -> Vec<NodeRef>
where
F: FnMut(&'a RoutingTableInner, &'b BucketEntryInner) -> bool,
{
self.find_fastest_nodes(
// count
node_count,
// filter
|rti, _k: DHTKey, v: Option<Arc<BucketEntry>>| {
let entry = v.unwrap();
entry.with(rti, |rti, e| {
// skip nodes on local network
if e.node_info(RoutingDomain::LocalNetwork).is_some() {
return false;
}
// skip nodes not on public internet
if e.node_info(RoutingDomain::PublicInternet).is_none() {
return false;
}
// skip nodes that dont match entry filter
entry_filter(rti, e)
})
},
// transform
|_rti, k: DHTKey, v: Option<Arc<BucketEntry>>| {
NodeRef::new(self.clone(), k, v.unwrap().clone(), None)
},
)
}
// Retrieve up to N of each type of protocol capable nodes
pub fn find_bootstrap_nodes_filtered(&self, max_per_type: usize) -> Vec<NodeRef> {
let protocol_types = vec![
ProtocolType::UDP,
ProtocolType::TCP,
ProtocolType::WS,
ProtocolType::WSS,
];
let mut nodes_proto_v4 = vec![0usize, 0usize, 0usize, 0usize];
let mut nodes_proto_v6 = vec![0usize, 0usize, 0usize, 0usize];
self.find_fastest_nodes(
// count
protocol_types.len() * 2 * max_per_type,
// filter
move |rti, _k: DHTKey, v: Option<Arc<BucketEntry>>| {
let entry = v.unwrap();
entry.with(rti, |_rti, e| {
// skip nodes on our local network here
if e.has_node_info(RoutingDomain::LocalNetwork.into()) {
return false;
}
// does it have some dial info we need?
let filter = |n: &NodeInfo| {
let mut keep = false;
for did in &n.dial_info_detail_list {
if matches!(did.dial_info.address_type(), AddressType::IPV4) {
for (n, protocol_type) in protocol_types.iter().enumerate() {
if nodes_proto_v4[n] < max_per_type
&& did.dial_info.protocol_type() == *protocol_type
{
nodes_proto_v4[n] += 1;
keep = true;
}
}
} else if matches!(did.dial_info.address_type(), AddressType::IPV6) {
for (n, protocol_type) in protocol_types.iter().enumerate() {
if nodes_proto_v6[n] < max_per_type
&& did.dial_info.protocol_type() == *protocol_type
{
nodes_proto_v6[n] += 1;
keep = true;
}
}
}
}
keep
};
e.node_info(RoutingDomain::PublicInternet)
.map(filter)
.unwrap_or(false)
})
},
// transform
|_rti, k: DHTKey, v: Option<Arc<BucketEntry>>| {
NodeRef::new(self.clone(), k, v.unwrap().clone(), None)
},
)
}
pub fn filter_has_valid_signed_node_info_inner(
inner: &RoutingTableInner,
routing_domain: RoutingDomain,
has_valid_own_node_info: bool,
v: Option<Arc<BucketEntry>>,
) -> bool {
match v {
None => has_valid_own_node_info,
Some(entry) => entry.with(inner, |_rti, e| {
e.signed_node_info(routing_domain.into())
.map(|sni| sni.has_valid_signature())
.unwrap_or(false)
}),
}
}
pub fn transform_to_peer_info_inner(
inner: &RoutingTableInner,
routing_domain: RoutingDomain,
own_peer_info: PeerInfo,
k: DHTKey,
v: Option<Arc<BucketEntry>>,
) -> PeerInfo {
match v {
None => own_peer_info,
Some(entry) => entry.with(inner, |_rti, e| {
e.make_peer_info(k, routing_domain).unwrap()
}),
}
}
pub fn find_peers_with_sort_and_filter<'a, 'b, F, C, T, O>(
&self,
node_count: usize,
cur_ts: u64,
mut filter: F,
compare: C,
mut transform: T,
) -> Vec<O>
where
F: FnMut(&'a RoutingTableInner, DHTKey, Option<Arc<BucketEntry>>) -> bool,
C: FnMut(
&'a RoutingTableInner,
&'b (DHTKey, Option<Arc<BucketEntry>>),
&'b (DHTKey, Option<Arc<BucketEntry>>),
) -> core::cmp::Ordering,
T: FnMut(&'a RoutingTableInner, DHTKey, Option<Arc<BucketEntry>>) -> O,
{
let inner = &*self.inner.read();
Self::find_peers_with_sort_and_filter_inner(
inner, node_count, cur_ts, filter, compare, transform,
)
}
pub fn find_peers_with_sort_and_filter_inner<'a, 'b, F, C, T, O>(
inner: &RoutingTableInner,
node_count: usize,
cur_ts: u64,
mut filter: F,
compare: C,
mut transform: T,
) -> Vec<O>
where
F: FnMut(&'a RoutingTableInner, DHTKey, Option<Arc<BucketEntry>>) -> bool,
C: FnMut(
&'a RoutingTableInner,
&'b (DHTKey, Option<Arc<BucketEntry>>),
&'b (DHTKey, Option<Arc<BucketEntry>>),
) -> core::cmp::Ordering,
T: FnMut(&'a RoutingTableInner, DHTKey, Option<Arc<BucketEntry>>) -> O,
{
// collect all the nodes for sorting
let mut nodes =
Vec::<(DHTKey, Option<Arc<BucketEntry>>)>::with_capacity(inner.bucket_entry_count + 1);
// add our own node (only one of there with the None entry)
if filter(inner, inner.node_id, None) {
nodes.push((inner.node_id, None));
}
// add all nodes from buckets
Self::with_entries(
&*inner,
cur_ts,
BucketEntryState::Unreliable,
|rti, k, v| {
// Apply filter
if filter(rti, k, Some(v.clone())) {
nodes.push((k, Some(v.clone())));
}
Option::<()>::None
},
);
// sort by preference for returning nodes
nodes.sort_by(|a, b| compare(inner, a, b));
// return transformed vector for filtered+sorted nodes
let cnt = usize::min(node_count, nodes.len());
let mut out = Vec::<O>::with_capacity(cnt);
for node in nodes {
let val = transform(inner, node.0, node.1);
out.push(val);
}
out
}
pub fn find_fastest_nodes<'a, T, F, O>(
&self,
node_count: usize,
mut filter: F,
transform: T,
) -> Vec<O>
where
F: FnMut(&'a RoutingTableInner, DHTKey, Option<Arc<BucketEntry>>) -> bool,
T: FnMut(&'a RoutingTableInner, DHTKey, Option<Arc<BucketEntry>>) -> O,
{
let cur_ts = intf::get_timestamp();
let out = self.find_peers_with_sort_and_filter(
node_count,
cur_ts,
// filter
|rti, k, v| {
if let Some(entry) = &v {
// always filter out dead nodes
if entry.with(rti, |_rti, e| e.state(cur_ts) == BucketEntryState::Dead) {
false
} else {
filter(rti, k, v)
}
} else {
// always filter out self peer, as it is irrelevant to the 'fastest nodes' search
false
}
},
// sort
|rti, (a_key, a_entry), (b_key, b_entry)| {
// same nodes are always the same
if a_key == b_key {
return core::cmp::Ordering::Equal;
}
// our own node always comes last (should not happen, here for completeness)
if a_entry.is_none() {
return core::cmp::Ordering::Greater;
}
if b_entry.is_none() {
return core::cmp::Ordering::Less;
}
// reliable nodes come first
let ae = a_entry.as_ref().unwrap();
let be = b_entry.as_ref().unwrap();
ae.with(rti, |rti, ae| {
be.with(rti, |_rti, be| {
let ra = ae.check_reliable(cur_ts);
let rb = be.check_reliable(cur_ts);
if ra != rb {
if ra {
return core::cmp::Ordering::Less;
} else {
return core::cmp::Ordering::Greater;
}
}
// latency is the next metric, closer nodes first
let a_latency = match ae.peer_stats().latency.as_ref() {
None => {
// treat unknown latency as slow
return core::cmp::Ordering::Greater;
}
Some(l) => l,
};
let b_latency = match be.peer_stats().latency.as_ref() {
None => {
// treat unknown latency as slow
return core::cmp::Ordering::Less;
}
Some(l) => l,
};
// Sort by average latency
a_latency.average.cmp(&b_latency.average)
})
})
},
// transform,
transform,
);
out
}
pub fn find_closest_nodes<'a, F, T, O>(
&self,
node_id: DHTKey,
filter: F,
mut transform: T,
) -> Vec<O>
where
F: FnMut(&'a RoutingTableInner, DHTKey, Option<Arc<BucketEntry>>) -> bool,
T: FnMut(&'a RoutingTableInner, DHTKey, Option<Arc<BucketEntry>>) -> O,
{
let cur_ts = intf::get_timestamp();
let node_count = {
let c = self.unlocked_inner.config.get();
c.network.dht.max_find_node_count as usize
};
let out = self.find_peers_with_sort_and_filter(
node_count,
cur_ts,
// filter
filter,
// sort
|rti, (a_key, a_entry), (b_key, b_entry)| {
// same nodes are always the same
if a_key == b_key {
return core::cmp::Ordering::Equal;
}
// reliable nodes come first, pessimistically treating our own node as unreliable
let ra = a_entry
.as_ref()
.map_or(false, |x| x.with(rti, |_rti, x| x.check_reliable(cur_ts)));
let rb = b_entry
.as_ref()
.map_or(false, |x| x.with(rti, |_rti, x| x.check_reliable(cur_ts)));
if ra != rb {
if ra {
return core::cmp::Ordering::Less;
} else {
return core::cmp::Ordering::Greater;
}
}
// distance is the next metric, closer nodes first
let da = distance(a_key, &node_id);
let db = distance(b_key, &node_id);
da.cmp(&db)
},
// transform,
&mut transform,
);
log_rtab!(">> find_closest_nodes: node count = {}", out.len());
out
}
// Build a map of protocols to low level ports
// This way we can get the set of protocols required to keep our NAT mapping alive for keepalive pings
// Only one protocol per low level protocol/port combination is required
// For example, if WS/WSS and TCP protocols are on the same low-level TCP port, only TCP keepalives will be required
// and we do not need to do WS/WSS keepalive as well. If they are on different ports, then we will need WS/WSS keepalives too.
pub fn get_low_level_port_info(&self) -> LowLevelPortInfo {
let mut low_level_protocol_ports =
BTreeSet::<(LowLevelProtocolType, AddressType, u16)>::new();
let mut protocol_to_port =
BTreeMap::<(ProtocolType, AddressType), (LowLevelProtocolType, u16)>::new();
let our_dids = self.all_filtered_dial_info_details(
RoutingDomain::PublicInternet.into(),
&DialInfoFilter::all(),
);
for did in our_dids {
low_level_protocol_ports.insert((
did.dial_info.protocol_type().low_level_protocol_type(),
did.dial_info.address_type(),
did.dial_info.socket_address().port(),
));
protocol_to_port.insert(
(did.dial_info.protocol_type(), did.dial_info.address_type()),
(
did.dial_info.protocol_type().low_level_protocol_type(),
did.dial_info.socket_address().port(),
),
);
}
LowLevelPortInfo {
low_level_protocol_ports,
protocol_to_port,
}
}
fn make_public_internet_relay_node_filter(&self) -> impl Fn(&BucketEntryInner) -> bool {
// Get all our outbound protocol/address types
let outbound_dif = self.get_outbound_dial_info_filter(RoutingDomain::PublicInternet);
let mapped_port_info = self.get_low_level_port_info();
move |e: &BucketEntryInner| {
// Ensure this node is not on the local network
if e.has_node_info(RoutingDomain::LocalNetwork.into()) {
return false;
}
// Disqualify nodes that don't cover all our inbound ports for tcp and udp
// as we need to be able to use the relay for keepalives for all nat mappings
let mut low_level_protocol_ports = mapped_port_info.low_level_protocol_ports.clone();
let can_serve_as_relay = e
.node_info(RoutingDomain::PublicInternet)
.map(|n| {
let dids = n.all_filtered_dial_info_details(
Some(DialInfoDetail::reliable_sort), // By default, choose reliable protocol for relay
|did| did.matches_filter(&outbound_dif),
);
for did in &dids {
let pt = did.dial_info.protocol_type();
let at = did.dial_info.address_type();
if let Some((llpt, port)) = mapped_port_info.protocol_to_port.get(&(pt, at))
{
low_level_protocol_ports.remove(&(*llpt, at, *port));
}
}
low_level_protocol_ports.is_empty()
})
.unwrap_or(false);
if !can_serve_as_relay {
return false;
}
true
}
}
#[instrument(level = "trace", skip(self), ret)]
pub fn find_inbound_relay(
&self,
routing_domain: RoutingDomain,
cur_ts: u64,
) -> Option<NodeRef> {
// Get relay filter function
let relay_node_filter = match routing_domain {
RoutingDomain::PublicInternet => self.make_public_internet_relay_node_filter(),
RoutingDomain::LocalNetwork => {
unimplemented!();
}
};
// Go through all entries and find fastest entry that matches filter function
let inner = self.inner.read();
let inner = &*inner;
let mut best_inbound_relay: Option<(DHTKey, Arc<BucketEntry>)> = None;
// Iterate all known nodes for candidates
Self::with_entries(inner, cur_ts, BucketEntryState::Unreliable, |rti, k, v| {
let v2 = v.clone();
v.with(rti, |rti, e| {
// Ensure we have the node's status
if let Some(node_status) = e.node_status(routing_domain) {
// Ensure the node will relay
if node_status.will_relay() {
// Compare against previous candidate
if let Some(best_inbound_relay) = best_inbound_relay.as_mut() {
// Less is faster
let better = best_inbound_relay.1.with(rti, |_rti, best| {
BucketEntryInner::cmp_fastest_reliable(cur_ts, e, best)
== std::cmp::Ordering::Less
});
// Now apply filter function and see if this node should be included
if better && relay_node_filter(e) {
*best_inbound_relay = (k, v2);
}
} else if relay_node_filter(e) {
// Always store the first candidate
best_inbound_relay = Some((k, v2));
}
}
}
});
// Don't end early, iterate through all entries
Option::<()>::None
});
// Return the best inbound relay noderef
best_inbound_relay.map(|(k, e)| NodeRef::new(self.clone(), k, e, None))
}
#[instrument(level = "trace", skip(self), ret)]
pub fn register_find_node_answer(&self, peers: Vec<PeerInfo>) -> Vec<NodeRef> {
let node_id = self.node_id();
// register nodes we'd found
let mut out = Vec::<NodeRef>::with_capacity(peers.len());
for p in peers {
// if our own node if is in the list then ignore it, as we don't add ourselves to our own routing table
if p.node_id.key == node_id {
continue;
}
// node can not be its own relay
if let Some(rpi) = &p.signed_node_info.node_info.relay_peer_info {
if rpi.node_id == p.node_id {
continue;
}
}
// register the node if it's new
if let Some(nr) = self.register_node_with_signed_node_info(
RoutingDomain::PublicInternet,
p.node_id.key,
p.signed_node_info.clone(),
false,
) {
out.push(nr);
}
}
out
}
#[instrument(level = "trace", skip(self), ret, err)]
pub async fn find_node(
&self,
node_ref: NodeRef,
node_id: DHTKey,
) -> EyreResult<NetworkResult<Vec<NodeRef>>> {
let rpc_processor = self.rpc_processor();
let res = network_result_try!(
rpc_processor
.clone()
.rpc_call_find_node(Destination::direct(node_ref), node_id)
.await?
);
// register nodes we'd found
Ok(NetworkResult::value(
self.register_find_node_answer(res.answer),
))
}
#[instrument(level = "trace", skip(self), ret, err)]
pub async fn find_self(&self, node_ref: NodeRef) -> EyreResult<NetworkResult<Vec<NodeRef>>> {
let node_id = self.node_id();
self.find_node(node_ref, node_id).await
}
#[instrument(level = "trace", skip(self), ret, err)]
pub async fn find_target(&self, node_ref: NodeRef) -> EyreResult<NetworkResult<Vec<NodeRef>>> {
let node_id = node_ref.node_id();
self.find_node(node_ref, node_id).await
}
#[instrument(level = "trace", skip(self))]
pub async fn reverse_find_node(&self, node_ref: NodeRef, wide: bool) {
// Ask bootstrap node to 'find' our own node so we can get some more nodes near ourselves
// and then contact those nodes to inform -them- that we exist
// Ask bootstrap server for nodes closest to our own node
let closest_nodes = network_result_value_or_log!(debug match self.find_self(node_ref.clone()).await {
Err(e) => {
log_rtab!(error
"find_self failed for {:?}: {:?}",
&node_ref, e
);
return;
}
Ok(v) => v,
} => {
return;
});
// Ask each node near us to find us as well
if wide {
for closest_nr in closest_nodes {
network_result_value_or_log!(debug match self.find_self(closest_nr.clone()).await {
Err(e) => {
log_rtab!(error
"find_self failed for {:?}: {:?}",
&closest_nr, e
);
continue;
}
Ok(v) => v,
} => {
// Do nothing with non-values
continue;
});
}
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -97,7 +97,6 @@ impl NodeRef {
}
// Operate on entry accessors
pub(super) fn operate<T, F>(&self, f: F) -> T
where
F: FnOnce(&RoutingTableInner, &BucketEntryInner) -> T,
@ -217,6 +216,9 @@ impl NodeRef {
pub fn make_peer_info(&self, routing_domain: RoutingDomain) -> Option<PeerInfo> {
self.operate(|_rti, e| e.make_peer_info(self.node_id(), routing_domain))
}
pub fn node_info(&self, routing_domain: RoutingDomain) -> Option<NodeInfo> {
self.operate(|_rti, e| e.node_info(routing_domain).cloned())
}
pub fn signed_node_info_has_valid_signature(&self, routing_domain: RoutingDomain) -> bool {
self.operate(|_rti, e| {
e.signed_node_info(routing_domain)
@ -371,26 +373,26 @@ impl NodeRef {
pub fn stats_question_sent(&self, ts: u64, bytes: u64, expects_answer: bool) {
self.operate_mut(|rti, e| {
rti.self_transfer_stats_accounting.add_up(bytes);
rti.transfer_stats_accounting().add_up(bytes);
e.question_sent(ts, bytes, expects_answer);
})
}
pub fn stats_question_rcvd(&self, ts: u64, bytes: u64) {
self.operate_mut(|rti, e| {
rti.self_transfer_stats_accounting.add_down(bytes);
rti.transfer_stats_accounting().add_down(bytes);
e.question_rcvd(ts, bytes);
})
}
pub fn stats_answer_sent(&self, bytes: u64) {
self.operate_mut(|rti, e| {
rti.self_transfer_stats_accounting.add_up(bytes);
rti.transfer_stats_accounting().add_up(bytes);
e.answer_sent(bytes);
})
}
pub fn stats_answer_rcvd(&self, send_ts: u64, recv_ts: u64, bytes: u64) {
self.operate_mut(|rti, e| {
rti.self_transfer_stats_accounting.add_down(bytes);
rti.self_latency_stats_accounting
rti.transfer_stats_accounting().add_down(bytes);
rti.latency_stats_accounting()
.record_latency(recv_ts - send_ts);
e.answer_rcvd(send_ts, recv_ts, bytes);
})

View File

@ -14,7 +14,7 @@ pub struct SafetySpec {
}
/// Compiled route (safety route + private route)
#[derive(Clone, Debug, Serialize, Deserialize)]
#[derive(Clone, Debug)]
pub struct CompiledRoute {
/// The safety route attached to the private route
safety_route: SafetyRoute,
@ -78,10 +78,6 @@ pub struct RouteSpecStoreCache {
#[derive(Debug)]
pub struct RouteSpecStore {
/// Our node id
node_id: DHTKey,
/// Our node id secret
node_id_secret: DHTKeySecret,
/// Maximum number of hops in a route
max_route_hop_count: usize,
/// Default number of hops in a route
@ -179,8 +175,6 @@ impl RouteSpecStore {
let c = config.get();
Self {
node_id: c.network.node_id,
node_id_secret: c.network.node_id_secret,
max_route_hop_count: c.network.rpc.max_route_hop_count.into(),
default_route_hop_count: c.network.rpc.default_route_hop_count.into(),
content: RouteSpecStoreContent {
@ -198,8 +192,6 @@ impl RouteSpecStore {
let rsstdb = table_store.open("RouteSpecStore", 1).await?;
let content = rsstdb.load_cbor(0, b"content").await?.unwrap_or_default();
let mut rss = RouteSpecStore {
node_id: c.network.node_id,
node_id_secret: c.network.node_id_secret,
max_route_hop_count: c.network.rpc.max_route_hop_count.into(),
default_route_hop_count: c.network.rpc.default_route_hop_count.into(),
content,
@ -295,6 +287,7 @@ impl RouteSpecStore {
pub fn allocate_route(
&mut self,
rti: &RoutingTableInner,
routing_table: RoutingTable,
reliable: bool,
hop_count: usize,
directions: DirectionSet,
@ -413,20 +406,12 @@ impl RouteSpecStore {
};
// Pull the whole routing table in sorted order
let node_count = RoutingTable::get_entry_count_inner(
rti,
let node_count = rti.get_entry_count(
RoutingDomain::PublicInternet.into(),
BucketEntryState::Unreliable,
);
let nodes = RoutingTable::find_peers_with_sort_and_filter_inner(
rti,
self.node_id,
node_count,
cur_ts,
filter,
compare,
transform,
);
let nodes =
rti.find_peers_with_sort_and_filter(node_count, cur_ts, filter, compare, transform);
// If we couldn't find enough nodes, wait until we have more nodes in the routing table
if nodes.len() < hop_count {
@ -450,15 +435,13 @@ impl RouteSpecStore {
// Ensure this route is viable by checking that each node can contact the next one
if directions.contains(Direction::Outbound) {
let our_node_info =
RoutingTable::get_own_node_info_inner(rti, RoutingDomain::PublicInternet);
let our_node_id = self.node_id;
let our_node_info = rti.get_own_node_info(RoutingDomain::PublicInternet);
let our_node_id = rti.node_id();
let mut previous_node = &(our_node_id, our_node_info);
let mut reachable = true;
for n in permutation {
let current_node = nodes.get(*n).unwrap();
let cm = RoutingTable::get_contact_method_inner(
rti,
let cm = rti.get_contact_method(
RoutingDomain::PublicInternet,
&previous_node.0,
&previous_node.1,
@ -478,15 +461,13 @@ impl RouteSpecStore {
}
}
if directions.contains(Direction::Inbound) {
let our_node_info =
RoutingTable::get_own_node_info_inner(rti, RoutingDomain::PublicInternet);
let our_node_id = self.node_id;
let our_node_info = rti.get_own_node_info(RoutingDomain::PublicInternet);
let our_node_id = rti.node_id();
let mut next_node = &(our_node_id, our_node_info);
let mut reachable = true;
for n in permutation.iter().rev() {
let current_node = nodes.get(*n).unwrap();
let cm = RoutingTable::get_contact_method_inner(
rti,
let cm = rti.get_contact_method(
RoutingDomain::PublicInternet,
&next_node.0,
&next_node.1,
@ -522,7 +503,7 @@ impl RouteSpecStore {
let hops = route_nodes.iter().map(|v| nodes[*v].0).collect();
let hop_node_refs = route_nodes
.iter()
.map(|v| routing_table.lookup_node_ref(nodes[*v].0).unwrap())
.map(|v| rti.lookup_node_ref(routing_table, nodes[*v].0).unwrap())
.collect();
let (public_key, secret_key) = generate_secret();
@ -613,12 +594,15 @@ impl RouteSpecStore {
//////////////////////////////////////////////////////////////////////
/// Compiles a safety route to the private route, with caching
/// Returns an Err() if the parameters are wrong
/// Returns Ok(None) if no allocation could happen at this time (not an error)
pub fn compile_safety_route(
&mut self,
rti: &RoutingTableInner,
routing_table: RoutingTable,
safety_spec: SafetySpec,
private_route: PrivateRoute,
) -> Result<CompiledRoute, RPCError> {
) -> Result<Option<CompiledRoute>, RPCError> {
let pr_hopcount = private_route.hop_count as usize;
if pr_hopcount > self.max_route_hop_count {
return Err(RPCError::internal("private route hop count too long"));
@ -647,7 +631,20 @@ impl RouteSpecStore {
self.detail_mut(&sr_pubkey).unwrap()
} else {
// No route found, gotta allocate one
self.allocate_route(rti)
let sr_pubkey = match self
.allocate_route(
rti,
routing_table,
safety_spec.reliable,
safety_spec.hop_count,
Direction::Outbound.into(),
)
.map_err(RPCError::internal)?
{
Some(pk) => pk,
None => return Ok(None),
};
self.detail_mut(&sr_pubkey).unwrap()
}
};
@ -787,7 +784,9 @@ impl RouteSpecStore {
.detail_mut(&key)
.ok_or_else(|| eyre!("route does not exist"))?
.latency_stats_accounting;
self.detail_mut(&key).latency_stats = lsa.record_latency(latency);
self.detail_mut(&key)
.ok_or_else(|| eyre!("route does not exist"))?
.latency_stats = lsa.record_latency(latency);
Ok(())
}

View File

@ -122,8 +122,7 @@ impl RoutingDomainEditor {
let node_id = self.routing_table.node_id();
let mut inner = self.routing_table.inner.write();
let inner = &mut *inner;
RoutingTable::with_routing_domain_mut(inner, self.routing_domain, |detail| {
inner.with_routing_domain_mut(self.routing_domain, |detail| {
for change in self.changes {
match change {
RoutingDomainChange::ClearDialInfoDetails => {
@ -225,8 +224,8 @@ impl RoutingDomainEditor {
}
});
if changed {
RoutingTable::reset_all_seen_our_node_info(inner, self.routing_domain);
RoutingTable::reset_all_updated_since_last_network_change(inner);
inner.reset_all_seen_our_node_info(self.routing_domain);
inner.reset_all_updated_since_last_network_change();
}
}
if changed && self.send_node_info_updates {

File diff suppressed because it is too large Load Diff

View File

@ -47,7 +47,7 @@ impl RoutingTable {
.collect();
let mut inner = self.inner.write();
for idx in kick_queue {
Self::kick_bucket(&mut *inner, idx)
inner.kick_bucket(idx)
}
Ok(())
}

View File

@ -24,14 +24,42 @@ pub fn encode_route_hop_data(
Ok(())
}
pub fn decode_route_hop_data(
reader: &veilid_capnp::route_hop_data::Reader,
) -> Result<RouteHopData, RPCError> {
let nonce = decode_nonce(
&reader
.reborrow()
.get_nonce()
.map_err(RPCError::map_protocol("invalid nonce in route hop data"))?,
);
let blob = reader
.reborrow()
.get_blob()
.map_err(RPCError::map_protocol("invalid blob in route hop data"))?
.to_vec();
Ok(RouteHopData { nonce, blob })
}
////////////////////////////////////////////////////////////////////////////////////////////////////
pub fn encode_route_hop(
route_hop: &RouteHop,
builder: &mut veilid_capnp::route_hop::Builder,
) -> Result<(), RPCError> {
encode_node_dial_info(
&route_hop.dial_info,
&mut builder.reborrow().init_dial_info(),
)?;
let node_builder = builder.reborrow().init_node();
match &route_hop.node {
RouteNode::NodeId(ni) => {
let ni_builder = node_builder.init_node_id();
encode_public_key(&ni.key, &mut ni_builder)?;
}
RouteNode::PeerInfo(pi) => {
let pi_builder = node_builder.init_peer_info();
encode_peer_info(&pi, &mut pi_builder)?;
}
}
if let Some(rhd) = &route_hop.next_hop {
let mut rhd_builder = builder.reborrow().init_next_hop();
encode_route_hop_data(rhd, &mut rhd_builder)?;
@ -39,6 +67,36 @@ pub fn encode_route_hop(
Ok(())
}
pub fn decode_route_hop(reader: &veilid_capnp::route_hop::Reader) -> Result<RouteHop, RPCError> {
let n_reader = reader.reborrow().get_node();
let node = match n_reader.which().map_err(RPCError::protocol)? {
veilid_capnp::route_hop::node::Which::NodeId(ni) => {
let ni_reader = ni.map_err(RPCError::protocol)?;
RouteNode::NodeId(NodeId::new(decode_public_key(&ni_reader)))
}
veilid_capnp::route_hop::node::Which::PeerInfo(pi) => {
let pi_reader = pi.map_err(RPCError::protocol)?;
RouteNode::PeerInfo(
decode_peer_info(&pi_reader, true)
.map_err(RPCError::map_protocol("invalid peer info in route hop"))?,
)
}
};
let next_hop = if reader.has_next_hop() {
let rhd_reader = reader
.get_next_hop()
.map_err(RPCError::map_protocol("invalid next hop in route hop"))?;
Some(decode_route_hop_data(&rhd_reader)?)
} else {
None
};
Ok(RouteHop { node, next_hop })
}
////////////////////////////////////////////////////////////////////////////////////////////////////
pub fn encode_private_route(
private_route: &PrivateRoute,
builder: &mut veilid_capnp::private_route::Builder,
@ -48,7 +106,7 @@ pub fn encode_private_route(
&mut builder.reborrow().init_public_key(),
)?;
builder.set_hop_count(private_route.hop_count);
if let Some(rh) = &private_route.hops {
if let Some(rh) = &private_route.first_hop {
let mut rh_builder = builder.reborrow().init_first_hop();
encode_route_hop(rh, &mut rh_builder)?;
};
@ -56,6 +114,31 @@ pub fn encode_private_route(
Ok(())
}
pub fn decode_private_route(
reader: &veilid_capnp::private_route::Reader,
) -> Result<PrivateRoute, RPCError> {
let public_key = decode_public_key(&reader.get_public_key().map_err(
RPCError::map_protocol("invalid public key in private route"),
)?);
let hop_count = reader.get_hop_count();
let first_hop = if reader.has_first_hop() {
let rh_reader = reader
.get_first_hop()
.map_err(RPCError::map_protocol("invalid first hop in private route"))?;
Some(decode_route_hop(&rh_reader)?)
} else {
None
};
Ok(PrivateRoute {
public_key,
hop_count,
first_hop,
})
}
////////////////////////////////////////////////////////////////////////////////////////////////////
pub fn encode_safety_route(
safety_route: &SafetyRoute,
builder: &mut veilid_capnp::safety_route::Builder,
@ -80,71 +163,6 @@ pub fn encode_safety_route(
Ok(())
}
pub fn decode_route_hop_data(
reader: &veilid_capnp::route_hop_data::Reader,
) -> Result<RouteHopData, RPCError> {
let nonce = decode_nonce(
&reader
.reborrow()
.get_nonce()
.map_err(RPCError::map_protocol("invalid nonce in route hop data"))?,
);
let blob = reader
.reborrow()
.get_blob()
.map_err(RPCError::map_protocol("invalid blob in route hop data"))?
.to_vec();
Ok(RouteHopData { nonce, blob })
}
pub fn decode_route_hop(reader: &veilid_capnp::route_hop::Reader) -> Result<RouteHop, RPCError> {
let dial_info = decode_node_dial_info(
&reader
.reborrow()
.get_dial_info()
.map_err(RPCError::map_protocol("invalid dial info in route hop"))?,
)?;
let next_hop = if reader.has_next_hop() {
let rhd_reader = reader
.get_next_hop()
.map_err(RPCError::map_protocol("invalid next hop in route hop"))?;
Some(decode_route_hop_data(&rhd_reader)?)
} else {
None
};
Ok(RouteHop {
dial_info,
next_hop,
})
}
pub fn decode_private_route(
reader: &veilid_capnp::private_route::Reader,
) -> Result<PrivateRoute, RPCError> {
let public_key = decode_public_key(&reader.get_public_key().map_err(
RPCError::map_protocol("invalid public key in private route"),
)?);
let hop_count = reader.get_hop_count();
let hops = if reader.has_first_hop() {
let rh_reader = reader
.get_first_hop()
.map_err(RPCError::map_protocol("invalid first hop in private route"))?;
Some(decode_route_hop(&rh_reader)?)
} else {
None
};
Ok(PrivateRoute {
public_key,
hop_count,
hops,
})
}
pub fn decode_safety_route(
reader: &veilid_capnp::safety_route::Reader,
) -> Result<SafetyRoute, RPCError> {

View File

@ -8,7 +8,7 @@ pub enum Destination {
/// The node to send to
target: NodeRef,
/// Require safety route or not
safety: Option<SafetySpec>,
safety_spec: Option<SafetySpec>,
},
/// Send to node for relay purposes
Relay {
@ -17,14 +17,14 @@ pub enum Destination {
/// The final destination the relay should send to
target: DHTKey,
/// Require safety route or not
safety: Option<SafetySpec>,
safety_spec: Option<SafetySpec>,
},
/// Send to private route (privateroute)
PrivateRoute {
/// A private route to send to
private_route: PrivateRoute,
/// Require safety route or not
safety: Option<SafetySpec>,
safety_spec: Option<SafetySpec>,
/// Prefer reliability or not
reliable: bool,
},
@ -34,46 +34,49 @@ impl Destination {
pub fn direct(target: NodeRef) -> Self {
Self::Direct {
target,
safety: None,
safety_spec: None,
}
}
pub fn relay(relay: NodeRef, target: DHTKey) -> Self {
Self::Relay {
relay,
target,
safety: None,
safety_spec: None,
}
}
pub fn private_route(private_route: PrivateRoute, reliable: bool) -> Self {
Self::PrivateRoute {
private_route,
safety: None,
safety_spec: None,
reliable,
}
}
pub fn with_safety(self, spec: SafetySpec) -> Self {
pub fn with_safety(self, safety_spec: SafetySpec) -> Self {
match self {
Destination::Direct { target, safety: _ } => Self::Direct {
Destination::Direct {
target,
safety: Some(spec),
safety_spec: _,
} => Self::Direct {
target,
safety_spec: Some(safety_spec),
},
Destination::Relay {
relay,
target,
safety: _,
safety_spec: _,
} => Self::Relay {
relay,
target,
safety: Some(spec),
safety_spec: Some(safety_spec),
},
Destination::PrivateRoute {
private_route,
safety: _,
safety_spec: _,
reliable,
} => Self::PrivateRoute {
private_route,
safety: Some(spec),
safety_spec: Some(safety_spec),
reliable,
},
}
@ -83,26 +86,29 @@ impl Destination {
impl fmt::Display for Destination {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Destination::Direct { target, safety } => {
let sr = if safety.is_some() { "+SR" } else { "" };
Destination::Direct {
target,
safety_spec,
} => {
let sr = if safety_spec.is_some() { "+SR" } else { "" };
write!(f, "{}{}", target, sr)
}
Destination::Relay {
relay,
target,
safety,
safety_spec,
} => {
let sr = if safety.is_some() { "+SR" } else { "" };
let sr = if safety_spec.is_some() { "+SR" } else { "" };
write!(f, "{}@{}{}", target.encode(), relay, sr)
}
Destination::PrivateRoute {
private_route,
safety,
safety_spec,
reliable,
} => {
let sr = if safety.is_some() { "+SR" } else { "" };
let sr = if safety_spec.is_some() { "+SR" } else { "" };
let rl = if *reliable { "+RL" } else { "" };
write!(f, "{}{}{}", private_route, sr, rl)

View File

@ -1,7 +1,6 @@
mod coders;
mod destination;
mod operation_waiter;
mod private_route;
mod rpc_app_call;
mod rpc_app_message;
mod rpc_cancel_tunnel;
@ -24,7 +23,6 @@ mod rpc_watch_value;
pub use destination::*;
pub use operation_waiter::*;
pub use private_route::*;
pub use rpc_error::*;
use super::*;
@ -398,7 +396,7 @@ impl RPCProcessor {
}
// Wrap an operation with a private route inside a safety route
pub(super) fn wrap_with_route(
pub(super) fn wrap_with_route(xxx continue here
&self,
safety_spec: SafetySpec,
private_route: PrivateRoute,
@ -406,7 +404,7 @@ impl RPCProcessor {
) -> Result<RenderedOperation, RPCError> {
let compiled_route: CompiledRoute = self.routing_table().with_route_spec_store(|rss| {
// Compile the safety route with the private route
rss.compile_safety_route(safety_spec, private_route)
rss.compile_safety_route(self.safety_spec, private_route)
})?;
// Encrypt routed operation

View File

@ -72,8 +72,7 @@ impl RPCProcessor {
find_node_q.node_id,
// filter
|rti, _k, v| {
RoutingTable::filter_has_valid_signed_node_info_inner(
rti,
rti.filter_has_valid_signed_node_info(
RoutingDomain::PublicInternet,
has_valid_own_node_info,
v,
@ -81,11 +80,9 @@ impl RPCProcessor {
},
// transform
|rti, k, v| {
let own_peer_info = own_peer_info.clone();
RoutingTable::transform_to_peer_info_inner(
rti,
rti.transform_to_peer_info(
RoutingDomain::PublicInternet,
own_peer_info,
own_peer_info.clone(),
k,
v,
)

View File

@ -341,7 +341,7 @@ impl VeilidAPI {
nr.merge_filter(NodeRefFilter::new().with_routing_domain(routing_domain))
}
let cm = routing_table
let cm = network_manager
.get_node_contact_method(nr)
.map_err(VeilidAPIError::internal)?;

View File

@ -11,7 +11,7 @@ pub struct RouteHopData {
#[derive(Clone, Debug)]
pub enum RouteNode {
NodeId(DHTKey),
NodeId(NodeId),
PeerInfo(PeerInfo),
}
impl fmt::Display for RouteNode {
@ -20,7 +20,7 @@ impl fmt::Display for RouteNode {
f,
"{}",
match self {
RouteNode::NodeId(x) => x.encode(),
RouteNode::NodeId(x) => x.key.encode(),
RouteNode::PeerInfo(pi) => pi.node_id.key.encode(),
}
)

View File

@ -11,7 +11,7 @@ pub struct RoutingContextInner {}
pub struct RoutingContextUnlockedInner {
/// Enforce use of private routing
privacy: bool,
privacy: usize,
/// Choose reliable protocols over unreliable/faster protocols when available
reliable: bool,
}
@ -41,21 +41,45 @@ impl RoutingContext {
api,
inner: Arc::new(Mutex::new(RoutingContextInner {})),
unlocked_inner: Arc::new(RoutingContextUnlockedInner {
privacy: false,
privacy: 0,
reliable: false,
}),
}
}
pub fn with_privacy(self) -> Self {
Self {
pub fn with_default_privacy(self) -> Result<Self, VeilidAPIError> {
let config = self.api.config()?;
let c = config.get();
Ok(Self {
api: self.api.clone(),
inner: Arc::new(Mutex::new(RoutingContextInner {})),
unlocked_inner: Arc::new(RoutingContextUnlockedInner {
privacy: true,
privacy: c.network.rpc.default_route_hop_count as usize,
reliable: self.unlocked_inner.reliable,
}),
})
}
pub fn with_privacy(self, hops: usize) -> Result<Self, VeilidAPIError> {
let config = self.api.config()?;
let c = config.get();
let privacy = if hops > 0 && hops <= c.network.rpc.max_route_hop_count as usize {
hops
} else {
return Err(VeilidAPIError::invalid_argument(
"hops value is too large",
"hops",
hops,
));
};
Ok(Self {
api: self.api.clone(),
inner: Arc::new(Mutex::new(RoutingContextInner {})),
unlocked_inner: Arc::new(RoutingContextUnlockedInner {
privacy,
reliable: self.unlocked_inner.reliable,
}),
})
}
pub fn with_reliability(self) -> Self {
@ -93,12 +117,20 @@ impl RoutingContext {
}
Ok(rpc_processor::Destination::Direct {
target: nr,
safety: self.unlocked_inner.privacy,
safety_spec: Some(routing_table::SafetySpec {
preferred_route: None,
hop_count: self.unlocked_inner.privacy,
reliable: self.unlocked_inner.reliable,
}),
})
}
Target::PrivateRoute(pr) => Ok(rpc_processor::Destination::PrivateRoute {
private_route: pr,
safety: self.unlocked_inner.privacy,
safety_spec: Some(routing_table::SafetySpec {
preferred_route: None,
hop_count: self.unlocked_inner.privacy,
reliable: self.unlocked_inner.reliable,
}),
reliable: self.unlocked_inner.reliable,
}),
}

View File

@ -81,7 +81,7 @@ core:
max_timestamp_behind_ms: 10000
max_timestamp_ahead_ms: 10000
timeout_ms: 10000
max_route_hop_count: 7
max_route_hop_count: 4
default_route_hop_count: 2
dht:
resolve_node_timeout:
@ -1491,7 +1491,7 @@ mod tests {
assert_eq!(s.core.network.rpc.max_timestamp_behind_ms, Some(10_000u32));
assert_eq!(s.core.network.rpc.max_timestamp_ahead_ms, Some(10_000u32));
assert_eq!(s.core.network.rpc.timeout_ms, 10_000u32);
assert_eq!(s.core.network.rpc.max_route_hop_count, 7);
assert_eq!(s.core.network.rpc.max_route_hop_count, 4);
assert_eq!(s.core.network.rpc.default_route_hop_count, 2);
//
assert_eq!(s.core.network.dht.resolve_node_timeout_ms, None);