public address detection refactoring

This commit is contained in:
Christien Rioux 2023-09-03 13:07:36 -04:00
parent 8d694f20cd
commit 1b5934dad4
2 changed files with 65 additions and 691 deletions

View File

@ -1,3 +1,4 @@
mod discovery_context;
mod igd_manager;
mod network_class_discovery;
mod network_tcp;
@ -8,6 +9,7 @@ mod start_protocols;
use super::*;
use crate::routing_table::*;
use connection_manager::*;
use discovery_context::*;
use network_interfaces::*;
use network_tcp::*;
use protocol::tcp::RawTcpProtocolHandler;

View File

@ -1,659 +1,9 @@
/// Detect NetworkClass and DialInfo for the PublicInternet RoutingDomain
/// Also performs UPNP/IGD mapping if enabled and possible
/// Detect NetworkClass and DialInfo for the DialInfo for the PublicInternet RoutingDomain
use super::*;
use futures_util::stream::FuturesUnordered;
use futures_util::FutureExt;
use stop_token::future::FutureExt as StopTokenFutureExt;
const PORT_MAP_VALIDATE_TRY_COUNT: usize = 3;
const PORT_MAP_VALIDATE_DELAY_MS: u32 = 500;
const PORT_MAP_TRY_COUNT: usize = 3;
struct DetectedPublicDialInfo {
dial_info: DialInfo,
class: DialInfoClass,
}
struct DiscoveryContextInner {
// per-protocol
intf_addrs: Option<Vec<SocketAddress>>,
protocol_type: Option<ProtocolType>,
address_type: Option<AddressType>,
// first node contacted
external_1_dial_info: Option<DialInfo>,
external_1_address: Option<SocketAddress>,
node_1: Option<NodeRef>,
// detected public dialinfo
detected_network_class: Option<NetworkClass>,
detected_public_dial_info: Option<DetectedPublicDialInfo>,
}
#[derive(Clone)]
pub struct DiscoveryContext {
routing_table: RoutingTable,
net: Network,
inner: Arc<Mutex<DiscoveryContextInner>>,
}
#[derive(Clone, Debug)]
struct DetectedDialInfo {
dial_info: DialInfo,
dial_info_class: DialInfoClass,
network_class: NetworkClass,
}
impl DiscoveryContext {
pub fn new(routing_table: RoutingTable, net: Network) -> Self {
Self {
routing_table,
net,
inner: Arc::new(Mutex::new(DiscoveryContextInner {
// per-protocol
intf_addrs: None,
protocol_type: None,
address_type: None,
external_1_dial_info: None,
external_1_address: None,
node_1: None,
detected_network_class: None,
detected_public_dial_info: None,
})),
}
}
///////
// Utilities
// Pick the best network class we have seen so far
pub fn set_detected_network_class(&self, network_class: NetworkClass) {
let mut inner = self.inner.lock();
debug!(target: "net",
protocol_type=?inner.protocol_type,
address_type=?inner.address_type,
?network_class,
"set_detected_network_class"
);
inner.detected_network_class = Some(network_class);
}
pub fn set_detected_public_dial_info(&self, dial_info: DialInfo, class: DialInfoClass) {
let mut inner = self.inner.lock();
debug!(target: "net",
protocol_type=?inner.protocol_type,
address_type=?inner.address_type,
?dial_info,
?class,
"set_detected_public_dial_info"
);
inner.detected_public_dial_info = Some(DetectedPublicDialInfo { dial_info, class });
}
// Ask for a public address check from a particular noderef
// This is done over the normal port using RPC
#[instrument(level = "trace", skip(self), ret)]
async fn request_public_address(&self, node_ref: NodeRef) -> Option<SocketAddress> {
let rpc = self.routing_table.rpc_processor();
let res = network_result_value_or_log!(match rpc.rpc_call_status(Destination::direct(node_ref.clone())).await {
Ok(v) => v,
Err(e) => {
log_net!(error
"failed to get status answer from {:?}: {}",
node_ref, e
);
return None;
}
} => [ format!(": node_ref={}", node_ref) ] {
return None;
}
);
log_net!(
"request_public_address {:?}: Value({:?})",
node_ref,
res.answer
);
res.answer.map(|si| si.socket_address)
}
// find fast peers with a particular address type, and ask them to tell us what our external address is
// This is done over the normal port using RPC
#[instrument(level = "trace", skip(self), ret)]
async fn discover_external_address(
&self,
protocol_type: ProtocolType,
address_type: AddressType,
ignore_node_ids: Option<TypedKeyGroup>,
) -> Option<(SocketAddress, NodeRef)> {
let node_count = {
let config = self.routing_table.network_manager().config();
let c = config.get();
c.network.dht.max_find_node_count as usize
};
let routing_domain = RoutingDomain::PublicInternet;
// Build an filter that matches our protocol and address type
// and excludes relayed nodes so we can get an accurate external address
let dial_info_filter = DialInfoFilter::all()
.with_protocol_type(protocol_type)
.with_address_type(address_type);
let inbound_dial_info_entry_filter = RoutingTable::make_inbound_dial_info_entry_filter(
routing_domain,
dial_info_filter.clone(),
);
let disallow_relays_filter = Box::new(
move |rti: &RoutingTableInner, v: Option<Arc<BucketEntry>>| {
let v = v.unwrap();
v.with(rti, |_rti, e| {
if let Some(n) = e.signed_node_info(routing_domain) {
n.relay_ids().is_empty()
} else {
false
}
})
},
) as RoutingTableEntryFilter;
let will_validate_dial_info_filter = Box::new(
move |rti: &RoutingTableInner, v: Option<Arc<BucketEntry>>| {
let entry = v.unwrap();
entry.with(rti, move |_rti, e| {
e.node_info(routing_domain)
.map(|ni| {
ni.has_capability(CAP_VALIDATE_DIAL_INFO)
&& ni.is_fully_direct_inbound()
})
.unwrap_or(false)
})
},
) as RoutingTableEntryFilter;
let mut filters = VecDeque::from([
inbound_dial_info_entry_filter,
disallow_relays_filter,
will_validate_dial_info_filter,
]);
if let Some(ignore_node_ids) = ignore_node_ids {
let ignore_nodes_filter = Box::new(
move |rti: &RoutingTableInner, v: Option<Arc<BucketEntry>>| {
let v = v.unwrap();
v.with(rti, |_rti, e| !e.node_ids().contains_any(&ignore_node_ids))
},
) as RoutingTableEntryFilter;
filters.push_back(ignore_nodes_filter);
}
// Find public nodes matching this filter
let peers = self
.routing_table
.find_fast_public_nodes_filtered(node_count, filters);
if peers.is_empty() {
log_net!(debug
"no external address detection peers of type {:?}:{:?}",
protocol_type,
address_type
);
return None;
}
// For each peer, ask them for our public address, filtering on desired dial info
for mut peer in peers {
peer.set_filter(Some(
NodeRefFilter::new()
.with_routing_domain(routing_domain)
.with_dial_info_filter(dial_info_filter.clone()),
));
if let Some(sa) = self.request_public_address(peer.clone()).await {
return Some((sa, peer));
}
}
log_net!(debug "no peers responded with an external address");
None
}
// This pulls the already-detected local interface dial info from the routing table
#[instrument(level = "trace", skip(self), ret)]
fn get_local_addresses(
&self,
protocol_type: ProtocolType,
address_type: AddressType,
) -> Vec<SocketAddress> {
let filter = DialInfoFilter::all()
.with_protocol_type(protocol_type)
.with_address_type(address_type);
self.routing_table
.dial_info_details(RoutingDomain::LocalNetwork)
.iter()
.filter_map(|did| {
if did.dial_info.matches_filter(&filter) {
Some(did.dial_info.socket_address())
} else {
None
}
})
.collect()
}
#[instrument(level = "trace", skip(self), ret)]
async fn validate_dial_info(
&self,
node_ref: NodeRef,
dial_info: DialInfo,
redirect: bool,
) -> bool {
let rpc = self.routing_table.rpc_processor();
// asking for node validation doesn't have to use the dial info filter of the dial info we are validating
let mut node_ref = node_ref.clone();
node_ref.set_filter(None);
// ask the node to send us a dial info validation receipt
let out = rpc
.rpc_call_validate_dial_info(node_ref.clone(), dial_info, redirect)
.await
.map_err(logthru_net!(
"failed to send validate_dial_info to {:?}",
node_ref
))
.unwrap_or(false);
out
}
#[instrument(level = "trace", skip(self), ret)]
async fn try_upnp_port_mapping(&self) -> Option<DialInfo> {
let (pt, llpt, at, external_address_1, node_1, local_port) = {
let inner = self.inner.lock();
let pt = inner.protocol_type.unwrap();
let llpt = pt.low_level_protocol_type();
let at = inner.address_type.unwrap();
let external_address_1 = inner.external_1_address.unwrap();
let node_1 = inner.node_1.as_ref().unwrap().clone();
let local_port = self.net.get_local_port(pt).unwrap();
(pt, llpt, at, external_address_1, node_1, local_port)
};
let mut tries = 0;
loop {
tries += 1;
// Attempt a port mapping. If this doesn't succeed, it's not going to
let Some(mapped_external_address) = self
.net
.unlocked_inner
.igd_manager
.map_any_port(llpt, at, local_port, Some(external_address_1.to_ip_addr()))
.await else
{
return None;
};
// Make dial info from the port mapping
let external_mapped_dial_info =
self.make_dial_info(SocketAddress::from_socket_addr(mapped_external_address), pt);
// Attempt to validate the port mapping
let mut validate_tries = 0;
loop {
validate_tries += 1;
// Ensure people can reach us. If we're firewalled off, this is useless
if self
.validate_dial_info(node_1.clone(), external_mapped_dial_info.clone(), false)
.await
{
return Some(external_mapped_dial_info);
}
if validate_tries == PORT_MAP_VALIDATE_TRY_COUNT {
log_net!(debug "UPNP port mapping succeeded but port {}/{} is still unreachable.\nretrying\n",
local_port, match llpt {
LowLevelProtocolType::UDP => "udp",
LowLevelProtocolType::TCP => "tcp",
});
sleep(PORT_MAP_VALIDATE_DELAY_MS).await
} else {
break;
}
}
// Release the mapping if we're still unreachable
let _ = self
.net
.unlocked_inner
.igd_manager
.unmap_port(llpt, at, external_address_1.port())
.await;
if tries == PORT_MAP_TRY_COUNT {
warn!("UPNP port mapping succeeded but port {}/{} is still unreachable.\nYou may need to add a local firewall allowed port on this machine.\n",
local_port, match llpt {
LowLevelProtocolType::UDP => "udp",
LowLevelProtocolType::TCP => "tcp",
}
);
break;
}
}
None
}
#[instrument(level = "trace", skip(self), ret)]
async fn try_port_mapping(&self) -> Option<DialInfo> {
let enable_upnp = {
let c = self.net.config.get();
c.network.upnp
};
if enable_upnp {
return self.try_upnp_port_mapping().await;
}
None
}
fn make_dial_info(&self, addr: SocketAddress, protocol_type: ProtocolType) -> DialInfo {
match protocol_type {
ProtocolType::UDP => DialInfo::udp(addr),
ProtocolType::TCP => DialInfo::tcp(addr),
ProtocolType::WS => {
let c = self.net.config.get();
DialInfo::try_ws(
addr,
format!("ws://{}/{}", addr, c.network.protocol.ws.path),
)
.unwrap()
}
ProtocolType::WSS => panic!("none of the discovery functions are used for wss"),
}
}
///////
// Per-protocol discovery routines
#[instrument(level = "trace", skip(self))]
pub fn protocol_begin(&self, protocol_type: ProtocolType, address_type: AddressType) {
// Get our interface addresses
let intf_addrs = self.get_local_addresses(protocol_type, address_type);
let mut inner = self.inner.lock();
inner.intf_addrs = Some(intf_addrs);
inner.protocol_type = Some(protocol_type);
inner.address_type = Some(address_type);
inner.external_1_dial_info = None;
inner.external_1_address = None;
inner.node_1 = None;
}
// Get our first node's view of our external IP address via normal RPC
#[instrument(level = "trace", skip(self), ret)]
pub async fn protocol_get_external_address_1(&self) -> bool {
let (protocol_type, address_type) = {
let inner = self.inner.lock();
(inner.protocol_type.unwrap(), inner.address_type.unwrap())
};
// Get our external address from some fast node, call it node 1
let (external_1, node_1) = match self
.discover_external_address(protocol_type, address_type, None)
.await
{
None => {
// If we can't get an external address, exit but don't throw an error so we can try again later
log_net!(debug "couldn't get external address 1 for {:?} {:?}", protocol_type, address_type);
return false;
}
Some(v) => v,
};
let external_1_dial_info = self.make_dial_info(external_1, protocol_type);
let mut inner = self.inner.lock();
inner.external_1_dial_info = Some(external_1_dial_info);
inner.external_1_address = Some(external_1);
inner.node_1 = Some(node_1);
log_net!(debug
"external_1_dial_info: {:?}\nexternal_1_address: {:?}\nnode_1: {:?}",
inner.external_1_dial_info, inner.external_1_address, inner.node_1
);
true
}
// If we know we are not behind NAT, check our firewall status
#[instrument(level = "trace", skip(self), err)]
pub async fn protocol_process_no_nat(&self) -> EyreResult<()> {
// Do these detections in parallel, but with ordering preference
let mut ord = FuturesOrdered::new();
// UPNP Automatic Mapping
///////////
let this = self.clone();
let do_mapped_fut: SendPinBoxFuture<Option<DetectedDialInfo>> = Box::pin(async move {
// Attempt a port mapping via all available and enabled mechanisms
// Try this before the direct mapping in the event that we are restarting
// and may not have recorded a mapping created the last time
if let Some(external_mapped_dial_info) = this.try_port_mapping().await {
// Got a port mapping, let's use it
return Some(DetectedDialInfo {
dial_info: external_mapped_dial_info.clone(),
dial_info_class: DialInfoClass::Mapped,
network_class: NetworkClass::InboundCapable,
});
}
None
});
ord.push_back(do_mapped_fut);
let this = self.clone();
let do_direct_fut: SendPinBoxFuture<Option<DetectedDialInfo>> = Box::pin(async move {
let (node_1, external_1_dial_info) = {
let inner = this.inner.lock();
(
inner.node_1.as_ref().unwrap().clone(),
inner.external_1_dial_info.as_ref().unwrap().clone(),
)
};
// Do a validate_dial_info on the external address from a redirected node
if this
.validate_dial_info(node_1.clone(), external_1_dial_info.clone(), true)
.await
{
// Add public dial info with Direct dialinfo class
Some(DetectedDialInfo {
dial_info: external_1_dial_info.clone(),
dial_info_class: DialInfoClass::Direct,
network_class: NetworkClass::InboundCapable,
})
} else {
// Add public dial info with Blocked dialinfo class
Some(DetectedDialInfo {
dial_info: external_1_dial_info.clone(),
dial_info_class: DialInfoClass::Blocked,
network_class: NetworkClass::InboundCapable,
})
}
});
ord.push_back(do_direct_fut);
while let Some(res) = ord.next().await {
if let Some(ddi) = res {
self.set_detected_public_dial_info(ddi.dial_info, ddi.dial_info_class);
self.set_detected_network_class(ddi.network_class);
break;
}
}
Ok(())
}
// If we know we are behind NAT check what kind
#[instrument(level = "trace", skip(self), ret, err)]
pub async fn protocol_process_nat(&self) -> EyreResult<bool> {
// Get the external dial info for our use here
let (node_1, external_1_dial_info, protocol_type) = {
let inner = self.inner.lock();
(
inner.node_1.as_ref().unwrap().clone(),
inner.external_1_dial_info.as_ref().unwrap().clone(),
inner.protocol_type.unwrap(),
)
};
// Do these detections in parallel, but with ordering preference
let mut ord = FuturesOrdered::new();
// UPNP Automatic Mapping
///////////
let this = self.clone();
let do_mapped_fut: SendPinBoxFuture<Option<DetectedDialInfo>> = Box::pin(async move {
// Attempt a port mapping via all available and enabled mechanisms
// Try this before the direct mapping in the event that we are restarting
// and may not have recorded a mapping created the last time
if let Some(external_mapped_dial_info) = this.try_port_mapping().await {
// Got a port mapping, let's use it
return Some(DetectedDialInfo {
dial_info: external_mapped_dial_info.clone(),
dial_info_class: DialInfoClass::Mapped,
network_class: NetworkClass::InboundCapable,
});
}
None
});
ord.push_back(do_mapped_fut);
// Manual Mapping Detection
///////////
let this = self.clone();
if let Some(local_port) = this.net.get_local_port(protocol_type) {
if external_1_dial_info.port() != local_port {
let c_external_1_dial_info = external_1_dial_info.clone();
let c_node_1 = node_1.clone();
let do_manual_map_fut: SendPinBoxFuture<Option<DetectedDialInfo>> =
Box::pin(async move {
// Do a validate_dial_info on the external address, but with the same port as the local port of local interface, from a redirected node
// This test is to see if a node had manual port forwarding done with the same port number as the local listener
let mut external_1_dial_info_with_local_port =
c_external_1_dial_info.clone();
external_1_dial_info_with_local_port.set_port(local_port);
if this
.validate_dial_info(
c_node_1.clone(),
external_1_dial_info_with_local_port.clone(),
true,
)
.await
{
// Add public dial info with Direct dialinfo class
return Some(DetectedDialInfo {
dial_info: external_1_dial_info_with_local_port,
dial_info_class: DialInfoClass::Direct,
network_class: NetworkClass::InboundCapable,
});
}
None
});
ord.push_back(do_manual_map_fut);
}
}
// Full Cone NAT Detection
///////////
let this = self.clone();
let c_node_1 = node_1.clone();
let c_external_1_dial_info = external_1_dial_info.clone();
let do_full_cone_fut: SendPinBoxFuture<Option<DetectedDialInfo>> = Box::pin(async move {
// Let's see what kind of NAT we have
// Does a redirected dial info validation from a different address and a random port find us?
if this
.validate_dial_info(c_node_1.clone(), c_external_1_dial_info.clone(), true)
.await
{
// Yes, another machine can use the dial info directly, so Full Cone
// Add public dial info with full cone NAT network class
return Some(DetectedDialInfo {
dial_info: c_external_1_dial_info,
dial_info_class: DialInfoClass::FullConeNAT,
network_class: NetworkClass::InboundCapable,
});
}
None
});
ord.push_back(do_full_cone_fut);
// Run detections in parallel and take the first one, ordered by preference, that returns a result
while let Some(res) = ord.next().await {
if let Some(ddi) = res {
self.set_detected_public_dial_info(ddi.dial_info, ddi.dial_info_class);
self.set_detected_network_class(ddi.network_class);
return Ok(true);
}
}
// We are restricted, determine what kind of restriction
// Get the external dial info for our use here
let (external_1_address, address_type) = {
let inner = self.inner.lock();
(
inner.external_1_address.unwrap(),
inner.address_type.unwrap(),
)
};
// Get our external address from some fast node, that is not node 1, call it node 2
let (external_2_address, node_2) = match self
.discover_external_address(protocol_type, address_type, Some(node_1.node_ids()))
.await
{
None => {
// If we can't get an external address, allow retry
log_net!(debug "failed to discover external address 2 for {:?}:{:?}, skipping node {:?}", protocol_type, address_type, node_1);
return Ok(false);
}
Some(v) => v,
};
log_net!(debug
"external_2_address: {:?}\nnode_2: {:?}",
external_2_address, node_2
);
// If we have two different external addresses, then this is a symmetric NAT
if external_2_address != external_1_address {
// Symmetric NAT is outbound only, no public dial info will work
self.set_detected_network_class(NetworkClass::OutboundOnly);
// No more retries
return Ok(true);
}
// If we're going to end up as a restricted NAT of some sort
// Address is the same, so it's address or port restricted
// Do a validate_dial_info on the external address from a random port
if self
.validate_dial_info(node_2.clone(), external_1_dial_info.clone(), false)
.await
{
// Got a reply from a non-default port, which means we're only address restricted
self.set_detected_public_dial_info(
external_1_dial_info,
DialInfoClass::AddressRestrictedNAT,
);
} else {
// Didn't get a reply from a non-default port, which means we are also port restricted
self.set_detected_public_dial_info(
external_1_dial_info,
DialInfoClass::PortRestrictedNAT,
);
}
self.set_detected_network_class(NetworkClass::InboundCapable);
// Allow another retry because sometimes trying again will get us Full Cone NAT instead
Ok(false)
}
}
impl Network {
#[instrument(level = "trace", skip(self, context), err)]
pub async fn update_protocol_dialinfo(
@ -670,6 +20,25 @@ impl Network {
// Start doing protocol
context.protocol_begin(protocol_type, address_type);
// UPNP Automatic Mapping
///////////
let this = self.clone();
let do_mapped_fut: SendPinBoxFuture<Option<DetectedDialInfo>> = Box::pin(async move {
// Attempt a port mapping via all available and enabled mechanisms
// Try this before the direct mapping in the event that we are restarting
// and may not have recorded a mapping created the last time
if let Some(external_mapped_dial_info) = this.try_port_mapping().await {
// Got a port mapping, let's use it
return Some(DetectedDialInfo {
dial_info: external_mapped_dial_info.clone(),
dial_info_class: DialInfoClass::Mapped,
network_class: NetworkClass::InboundCapable,
});
}
None
});
ord.push_back(do_mapped_fut);
// Loop for restricted NAT retries
loop {
log_net!(debug
@ -685,7 +54,7 @@ impl Network {
}
// If our local interface list contains external_1 then there is no NAT in place
{
let res = {
let inner = context.inner.lock();
inner
@ -701,7 +70,6 @@ impl Network {
// No more retries
break;
}
}
// There is -some NAT-
if context.protocol_process_nat().await? {
@ -719,6 +87,11 @@ impl Network {
Ok(())
}
#[instrument(level = "trace", skip(self), err)]
pub async fn update_with_discovery_context(&self, ctx: DiscoveryContext) -> EyreResult<()> {
//
}
#[instrument(level = "trace", skip(self), err)]
pub async fn do_public_dial_info_check(
&self,
@ -745,12 +118,12 @@ impl Network {
};
// Process all protocol and address combinations
let mut futures = FuturesUnordered::new();
let mut unord = FuturesUnordered::new();
// Do UDPv4+v6 at the same time as everything else
if protocol_config.inbound.contains(ProtocolType::UDP) {
// UDPv4
if protocol_config.family_global.contains(AddressType::IPV4) {
futures.push(
unord.push(
async {
let udpv4_context =
DiscoveryContext::new(self.routing_table(), self.clone());
@ -765,7 +138,7 @@ impl Network {
log_net!(debug "Failed UDPv4 dialinfo discovery: {}", e);
return None;
}
Some(vec![udpv4_context])
Some(udpv4_context)
}
.instrument(trace_span!("do_public_dial_info_check UDPv4"))
.boxed(),
@ -774,7 +147,7 @@ impl Network {
// UDPv6
if protocol_config.family_global.contains(AddressType::IPV6) {
futures.push(
unord.push(
async {
let udpv6_context =
DiscoveryContext::new(self.routing_table(), self.clone());
@ -789,7 +162,7 @@ impl Network {
log_net!(debug "Failed UDPv6 dialinfo discovery: {}", e);
return None;
}
Some(vec![udpv6_context])
Some(udpv6_context)
}
.instrument(trace_span!("do_public_dial_info_check UDPv6"))
.boxed(),
@ -800,7 +173,7 @@ impl Network {
// Do TCPv4. Possibly do WSv4 if it is on a different port
if protocol_config.family_global.contains(AddressType::IPV4) {
if protocol_config.inbound.contains(ProtocolType::TCP) {
futures.push(
unord.push(
async {
// TCPv4
let tcpv4_context =
@ -816,7 +189,7 @@ impl Network {
log_net!(debug "Failed TCPv4 dialinfo discovery: {}", e);
return None;
}
Some(vec![tcpv4_context])
Some(tcpv4_context)
}
.instrument(trace_span!("do_public_dial_info_check TCPv4"))
.boxed(),
@ -824,7 +197,7 @@ impl Network {
}
if protocol_config.inbound.contains(ProtocolType::WS) && !tcp_same_port {
futures.push(
unord.push(
async {
// WSv4
let wsv4_context =
@ -840,7 +213,7 @@ impl Network {
log_net!(debug "Failed WSv4 dialinfo discovery: {}", e);
return None;
}
Some(vec![wsv4_context])
Some(wsv4_context)
}
.instrument(trace_span!("do_public_dial_info_check WSv4"))
.boxed(),
@ -851,7 +224,7 @@ impl Network {
// Do TCPv6. Possibly do WSv6 if it is on a different port
if protocol_config.family_global.contains(AddressType::IPV6) {
if protocol_config.inbound.contains(ProtocolType::TCP) {
futures.push(
unord.push(
async {
// TCPv6
let tcpv6_context =
@ -867,7 +240,7 @@ impl Network {
log_net!(debug "Failed TCPv6 dialinfo discovery: {}", e);
return None;
}
Some(vec![tcpv6_context])
Some(tcpv6_context)
}
.instrument(trace_span!("do_public_dial_info_check TCPv6"))
.boxed(),
@ -876,7 +249,7 @@ impl Network {
// WSv6
if protocol_config.inbound.contains(ProtocolType::WS) && !tcp_same_port {
futures.push(
unord.push(
async {
let wsv6_context =
DiscoveryContext::new(self.routing_table(), self.clone());
@ -891,7 +264,7 @@ impl Network {
log_net!(debug "Failed WSv6 dialinfo discovery: {}", e);
return None;
}
Some(vec![wsv6_context])
Some(wsv6_context)
}
.instrument(trace_span!("do_public_dial_info_check WSv6"))
.boxed(),
@ -902,11 +275,11 @@ impl Network {
// Wait for all discovery futures to complete and collect contexts
let mut contexts = Vec::<DiscoveryContext>::new();
let mut new_network_class = Option::<NetworkClass>::None;
loop {
match futures.next().timeout_at(stop_token.clone()).await {
Ok(Some(ctxvec)) => {
if let Some(ctxvec) = ctxvec {
for ctx in ctxvec {
match unord.next().timeout_at(stop_token.clone()).await {
Ok(Some(ctx)) => {
if let Some(ctx) = ctx {
if let Some(nc) = ctx.inner.lock().detected_network_class {
if let Some(last_nc) = new_network_class {
if nc < last_nc {
@ -920,7 +293,6 @@ impl Network {
contexts.push(ctx);
}
}
}
Ok(None) => {
// Normal completion
break;