veilid/veilid-core/proto/veilid.capnp

421 lines
16 KiB
Cap'n Proto
Raw Normal View History

2021-11-22 11:28:30 -05:00
@0x8ffce8033734ab02;
# IDs And Hashes
##############################
struct Curve25519PublicKey {
u0 @0 :UInt64;
u1 @1 :UInt64;
u2 @2 :UInt64;
u3 @3 :UInt64;
}
struct Ed25519Signature {
u0 @0 :UInt64;
u1 @1 :UInt64;
u2 @2 :UInt64;
u3 @3 :UInt64;
u4 @4 :UInt64;
u5 @5 :UInt64;
u6 @6 :UInt64;
u7 @7 :UInt64;
}
struct XChaCha20Poly1305Nonce {
u0 @0 :UInt64;
u1 @1 :UInt64;
u2 @2 :UInt64;
}
struct BLAKE3Hash {
u0 @0 :UInt64;
u1 @1 :UInt64;
u2 @2 :UInt64;
u3 @3 :UInt64;
}
using NodeID = Curve25519PublicKey;
using RoutePublicKey = Curve25519PublicKey;
using ValueID = Curve25519PublicKey;
using Nonce = XChaCha20Poly1305Nonce;
using Signature = Ed25519Signature;
using BlockID = BLAKE3Hash;
using TunnelID = UInt64;
# Node Dial Info
################################################################
struct AddressIPV4 {
addr @0 :UInt32; # Address in big endian format
}
struct AddressIPV6 {
addr0 @0 :UInt32; # \
addr1 @1 :UInt32; # \ Address in big
addr2 @2 :UInt32; # / endian format
addr3 @3 :UInt32; # /
}
struct Address {
union {
ipv4 @0 :AddressIPV4;
ipv6 @1 :AddressIPV6;
hostname @2 :Text;
}
}
struct SocketAddress {
union {
ipv4 @0 :AddressIPV4;
ipv6 @1 :AddressIPV6;
}
port @2 :UInt16;
}
enum ProtocolKind {
udp @0;
ws @1;
wss @2;
tcp @3;
}
struct DialInfoUDP {
address @0 :Address;
port @1 :UInt16;
}
struct DialInfoTCP {
address @0 :Address;
port @1 :UInt16;
}
struct DialInfoWS {
2021-12-09 16:55:20 -05:00
host @0 :Text;
2021-11-22 11:28:30 -05:00
port @1 :UInt16;
path @2 :Text;
}
struct DialInfoWSS {
2021-12-09 16:55:20 -05:00
host @0 :Text;
2021-11-22 11:28:30 -05:00
port @1 :UInt16;
path @2 :Text;
}
struct DialInfo {
union {
udp @0 :DialInfoUDP;
tcp @1 :DialInfoTCP;
ws @2 :DialInfoWS;
wss @3 :DialInfoWSS;
}
}
struct NodeDialInfoSingle {
nodeId @0 :NodeID; # node id
dialInfo @1 :DialInfo; # how to get to the node
}
# Private Routes
##############################
struct RouteHopData {
nonce @0 :Nonce; # nonce for encrypted blob
blob @1 :Data; # encrypted blob with ENC(nonce,DH(PK,SK))
# can be one of:
# if more hops remain in this route: RouteHop (0 byte appended as key)
# if end of safety route and starting private route: PrivateRoute (1 byte appended as key)
}
struct RouteHop {
dialInfo @0 :NodeDialInfoSingle; # dial info for this hop
nextHop @1 :RouteHopData; # Optional: next hop in encrypted blob
# Null means no next hop, at destination (only used in private route, safety routes must enclose a stub private route)
}
struct PrivateRoute {
publicKey @0 :RoutePublicKey; # private route public key (unique per private route)
hopCount @1 :UInt8; # Count of hops left in the private route
firstHop @2 :RouteHop; # Optional: first hop in the private route
}
struct SafetyRoute {
publicKey @0 :RoutePublicKey; # safety route public key (unique per safety route)
hopCount @1 :UInt8; # Count of hops left in the safety route
hops :union {
data @2 :RouteHopData; # safety route has more hops
private @3 :PrivateRoute; # safety route has ended and private route follows
}
}
# Values
##############################
using ValueSeqNum = UInt32; # sequence numbers for values
struct ValueKey {
publicKey @0 :ValueID; # the location of the value
subkey @1 :Text; # the name of the subkey (or empty if the whole key)
}
struct ValueKeySeq {
key @0 :ValueKey; # the location of the value
seq @1 :ValueSeqNum; # the sequence number of the value subkey
}
struct ValueData {
data @0 :Data; # value or subvalue contents in CBOR format
seq @1 :ValueSeqNum; # sequence number of value
}
# Operations
##############################
struct OperationInfoQ {
}
struct NodeInfo {
canRoute @0 :Bool;
willRoute @1 :Bool;
canTunnel @2 :Bool;
willTunnel @3 :Bool;
canSignalLease @4 :Bool;
willSignalLease @5 :Bool;
canRelayLease @6 :Bool;
willRelayLease @7 :Bool;
canValidateDialInfo @8 :Bool;
willValidateDialInfo @9 :Bool;
}
struct SenderInfo {
socketAddress @0 :SocketAddress; # socket address was available for peer
}
struct OperationInfoA {
nodeInfo @0 :NodeInfo; # returned node information
senderInfo @1 :SenderInfo; # info about InfoQ sender
}
struct OperationValidateDialInfo {
dialInfo @0 :DialInfo; # dial info to use for the receipt
receipt @1 :Data; # receipt to return to dial info to prove it is reachable
redirect @2 :Bool; # request a different node do the validate
alternatePort @3 :Bool; # return receipt from a different source port than the default
}
struct OperationReturnReceipt {
receipt @0 :Data; # receipt being returned to its origin
}
struct OperationFindNodeQ {
nodeId @0 :NodeID; # node id to locate
peerInfo @1 :PeerInfo; # The peer info for node asking the question
}
struct PeerInfo {
nodeId @0 :NodeID; # node id or 'closer peer'
dialInfoList @1 :List(DialInfo); # dial info for 'closer peer'
}
struct OperationFindNodeA {
peers @0 :List(PeerInfo); # returned 'closer peer' information
}
struct RoutedOperation {
signatures @0 :List(Signature); # signatures from nodes that have handled the private route
nonce @1 :Nonce; # nonce Xmsg
data @2 :Data; # Operation encrypted with ENC(Xmsg,DH(PKapr,SKbsr))
}
struct OperationRoute {
safetyRoute @0 :SafetyRoute; # Where this should go
operation @1 :RoutedOperation; # The operation to be routed
}
struct OperationGetValueQ {
key @0 :ValueKey; # key for value to get
}
struct OperationGetValueA {
union {
data @0 :ValueData; # the value if successful
peers @1 :List(PeerInfo); # returned 'closer peer' information if not successful
}
}
struct OperationSetValueQ {
key @0 :ValueKey; # key for value to update
value @1 :ValueData; # value or subvalue contents in CBOR format (older or equal seq number gets dropped)
}
struct OperationSetValueA {
union {
data @0 :ValueData; # the new value if successful, may be a different value than what was set if the seq number was lower or equal
peers @1 :List(PeerInfo); # returned 'closer peer' information if not successful
}
}
struct OperationWatchValueQ {
key @0 :ValueKey; # key for value to watch
}
struct OperationWatchValueA {
expiration @0 :UInt64; # timestamp when this watch will expire in usec since epoch (0 if watch failed)
peers @1 :List(PeerInfo); # returned list of other nodes to ask that could propagate watches
}
struct OperationValueChanged {
key @0 :ValueKey; # key for value that changed
value @1 :ValueData; # value or subvalue contents in CBOR format with sequence number
}
struct OperationSupplyBlockQ {
blockId @0 :BlockID; # hash of the block we can supply
}
struct OperationSupplyBlockA {
union {
expiration @0 :UInt64; # when the block supplier entry will need to be refreshed
peers @1 :List(PeerInfo); # returned 'closer peer' information if not successful
}
}
struct OperationFindBlockQ {
blockId @0 :BlockID; # hash of the block we can supply
}
struct OperationFindBlockA {
data @0 :Data; # Optional: the actual block data if we have that block ourselves
# null if we don't have a block to return
suppliers @1 :List(PeerInfo); # returned list of suppliers if we have them
peers @2 :List(PeerInfo); # returned 'closer peer' information
}
struct OperationSignalQ {
data @0 :Data; # the signalling system request
}
struct OperationSignalA {
data @0 :Data; # the signalling system response
}
enum TunnelEndpointMode {
raw @0; # raw tunnel
turn @1; # turn tunnel
}
enum TunnelError {
badId @0; # Tunnel ID was rejected
noEndpoint @1; # Endpoint was unreachable
rejectedMode @2; # Endpoint couldn't provide mode
noCapacity @3; # Endpoint is full
}
struct TunnelEndpoint {
nodeId @0 :NodeID; # node id
dialInfoList @1 :List(DialInfo); # how to reach the node
mode @2 :TunnelEndpointMode; # what kind of endpoint this is
}
struct FullTunnel {
id @0 :TunnelID; # tunnel id to use everywhere
timeout @1 :UInt64; # duration from last data when this expires if no data is sent or received
local @2 :TunnelEndpoint; # local endpoint
remote @3 :TunnelEndpoint; # remote endpoint
}
struct PartialTunnel {
id @0 :TunnelID; # tunnel id to use everywhere
timeout @1 :UInt64; # timestamp when this expires if not completed
local @2 :TunnelEndpoint; # local endpoint
}
struct OperationStartTunnelQ {
id @0 :TunnelID; # tunnel id to use everywhere
localMode @1 :TunnelEndpointMode; # what kind of local endpoint mode is being requested
depth @2 :UInt8; # the number of nodes in the tunnel
}
struct OperationStartTunnelA {
union {
partial @0 :PartialTunnel; # the first half of the tunnel
error @1 :TunnelError; # if we didn't start the tunnel, why not
}
}
struct OperationCompleteTunnelQ {
id @0 :TunnelID; # tunnel id to use everywhere
localMode @1 :TunnelEndpointMode; # what kind of local endpoint mode is being requested
depth @2 :UInt8; # the number of nodes in the tunnel
endpoint @3 :TunnelEndpoint; # the remote endpoint to complete
}
struct OperationCompleteTunnelA {
union {
tunnel @0 :FullTunnel; # the tunnel description
error @1 :TunnelError; # if we didn't complete the tunnel, why not
}
}
struct OperationCancelTunnelQ {
tunnel @0 :TunnelID; # the tunnel id to cancel
}
struct OperationCancelTunnelA {
union {
tunnel @0 :TunnelID; # the tunnel id that was cancelled
error @1 :TunnelError; # if we couldn't cancel, why not
}
}
struct Operation {
opId @0 :UInt64; # Random RPC ID. Must be random to foil reply forgery attacks.
respondTo :union {
none @1 :Void; # no response is desired
sender @2 :Void; # envelope sender node id to be used for reply
# possibly through a relay if the request arrived that way
privateRoute @3 :PrivateRoute; # embedded private route to be used for reply
}
detail :union {
# Direct operations
infoQ @4 :OperationInfoQ;
infoA @5 :OperationInfoA;
validateDialInfo @6 :OperationValidateDialInfo;
findNodeQ @7 :OperationFindNodeQ;
findNodeA @8 :OperationFindNodeA;
route @9 :OperationRoute;
# Routable operations
getValueQ @10 :OperationGetValueQ;
getValueA @11 :OperationGetValueA;
setValueQ @12 :OperationSetValueQ;
setValueA @13 :OperationSetValueA;
watchValueQ @14 :OperationWatchValueQ;
watchValueA @15 :OperationWatchValueA;
valueChanged @16 :OperationValueChanged;
supplyBlockQ @17 :OperationSupplyBlockQ;
supplyBlockA @18 :OperationSupplyBlockA;
findBlockQ @19 :OperationFindBlockQ;
findBlockA @20 :OperationFindBlockA;
signalQ @21 :OperationSignalQ;
signalA @22 :OperationSignalA;
returnReceipt @23 :OperationReturnReceipt;
# Tunnel operations
startTunnelQ @24 :OperationStartTunnelQ;
startTunnelA @25 :OperationStartTunnelA;
completeTunnelQ @26 :OperationCompleteTunnelQ;
completeTunnelA @27 :OperationCompleteTunnelA;
cancelTunnelQ @28 :OperationCancelTunnelQ;
cancelTunnelA @29 :OperationCancelTunnelA;
}
}