Richard Geldreich 4a6cd91da7 new files
2023-02-03 13:31:18 -05:00

301 lines
7.6 KiB
C

/* array.c - automatic dynamic array for pointers */
/*
* Copyright (c) 2008, Natacha Porté
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "array.h"
#include <string.h>
/***************************
* STATIC HELPER FUNCTIONS *
***************************/
/* arr_realloc • realloc memory of a struct array */
static int
arr_realloc(struct array* arr, int neosz) {
void* neo;
neo = realloc(arr->base, neosz * arr->unit);
if (neo == 0) return 0;
arr->base = neo;
arr->asize = neosz;
if (arr->size > neosz) arr->size = neosz;
return 1; }
/* parr_realloc • realloc memory of a struct parray */
static int
parr_realloc(struct parray* arr, int neosz) {
void* neo;
neo = realloc(arr->item, neosz * sizeof (void*));
if (neo == 0) return 0;
arr->item = neo;
arr->asize = neosz;
if (arr->size > neosz) arr->size = neosz;
return 1; }
/***************************
* GENERIC ARRAY FUNCTIONS *
***************************/
/* arr_adjust • shrink the allocated memory to fit exactly the needs */
int
arr_adjust(struct array *arr) {
return arr_realloc(arr, arr->size); }
/* arr_free • frees the structure contents (buf NOT the struct itself) */
void
arr_free(struct array *arr) {
if (!arr) return;
free(arr->base);
arr->base = 0;
arr->size = arr->asize = 0; }
/* arr_grow • increases the array size to fit the given number of elements */
int
arr_grow(struct array *arr, int need) {
if (arr->asize >= need) return 1;
else return arr_realloc(arr, need); }
/* arr_init • initialization of the contents of the struct */
void
arr_init(struct array *arr, size_t unit) {
arr->base = 0;
arr->size = arr->asize = 0;
arr->unit = unit; }
/* arr_insert • inserting nb elements before the nth one */
int
arr_insert(struct array *arr, int nb, int n) {
char *src, *dst;
size_t len;
if (!arr || nb <= 0 || n < 0
|| !arr_grow(arr, arr->size + nb))
return 0;
if (n < arr->size) {
src = arr->base;
src += n * arr->unit;
dst = src + nb * arr->unit;
len = (arr->size - n) * arr->unit;
memmove(dst, src, len); }
arr->size += nb;
return 1; }
/* arr_item • returns a pointer to the n-th element */
void *
arr_item(struct array *arr, int no) {
char *ptr;
if (!arr || no < 0 || no >= arr->size) return 0;
ptr = arr->base;
ptr += no * arr->unit;
return ptr; }
/* arr_newitem • returns the index of a new element appended to the array */
int
arr_newitem(struct array *arr) {
if (!arr_grow(arr, arr->size + 1)) return -1;
arr->size += 1;
return arr->size - 1; }
/* arr_remove • removes the n-th elements of the array */
void
arr_remove(struct array *arr, int idx) {
if (!arr || idx < 0 || idx >= arr->size) return;
arr->size -= 1;
if (idx < arr->size) {
char *dst = arr->base;
char *src;
dst += idx * arr->unit;
src = dst + arr->unit;
memmove(dst, src, (arr->size - idx) * arr->unit); } }
/* arr_sorted_find • O(log n) search in a sorted array, returning entry */
void *
arr_sorted_find(struct array *arr, void *key, array_cmp_fn cmp) {
int mi, ma, cu, ret;
char *ptr = arr->base;
mi = -1;
ma = arr->size;
while (mi < ma - 1) {
cu = mi + (ma - mi) / 2;
ret = cmp(key, ptr + cu * arr->unit);
if (ret == 0) return ptr + cu * arr->unit;
else if (ret < 0) ma = cu;
else /* if (ret > 0) */ mi = cu; }
return 0; }
/* arr_sorted_find_i • O(log n) search in a sorted array,
* returning index of the smallest element larger than the key */
int
arr_sorted_find_i(struct array *arr, void *key, array_cmp_fn cmp) {
int mi, ma, cu, ret;
char *ptr = arr->base;
mi = -1;
ma = arr->size;
while (mi < ma - 1) {
cu = mi + (ma - mi) / 2;
ret = cmp(key, ptr + cu * arr->unit);
if (ret == 0) {
while (cu < arr->size && ret == 0) {
cu += 1;
ret = cmp(key, ptr + cu * arr->unit); }
return cu; }
else if (ret < 0) ma = cu;
else /* if (ret > 0) */ mi = cu; }
return ma; }
/***************************
* POINTER ARRAY FUNCTIONS *
***************************/
/* parr_adjust • shrinks the allocated memory to fit exactly the needs */
int
parr_adjust(struct parray* arr) {
return parr_realloc (arr, arr->size); }
/* parr_free • frees the structure contents (buf NOT the struct itself) */
void
parr_free(struct parray *arr) {
if (!arr) return;
free (arr->item);
arr->item = 0;
arr->size = 0;
arr->asize = 0; }
/* parr_grow • increases the array size to fit the given number of elements */
int
parr_grow(struct parray *arr, int need) {
if (arr->asize >= need) return 1;
else return parr_realloc (arr, need); }
/* parr_init • initialization of the struct (which is equivalent to zero) */
void
parr_init(struct parray *arr) {
arr->item = 0;
arr->size = 0;
arr->asize = 0; }
/* parr_insert • inserting nb elements before the nth one */
int
parr_insert(struct parray *parr, int nb, int n) {
char *src, *dst;
size_t len, i;
if (!parr || nb <= 0 || n < 0
|| !parr_grow(parr, parr->size + nb))
return 0;
if (n < parr->size) {
src = (void *)parr->item;
src += n * sizeof (void *);
dst = src + nb * sizeof (void *);
len = (parr->size - n) * sizeof (void *);
memmove(dst, src, len);
for (i = 0; i < nb; ++i)
parr->item[n + i] = 0; }
parr->size += nb;
return 1; }
/* parr_pop • pops the last item of the array and returns it */
void *
parr_pop(struct parray *arr) {
if (arr->size <= 0) return 0;
arr->size -= 1;
return arr->item[arr->size]; }
/* parr_push • pushes a pointer at the end of the array (= append) */
int
parr_push(struct parray *arr, void *i) {
if (!parr_grow(arr, arr->size + 1)) return 0;
arr->item[arr->size] = i;
arr->size += 1;
return 1; }
/* parr_remove • removes the n-th element of the array and returns it */
void *
parr_remove(struct parray *arr, int idx) {
void* ret;
int i;
if (!arr || idx < 0 || idx >= arr->size) return 0;
ret = arr->item[idx];
for (i = idx+1; i < arr->size; ++i)
arr->item[i - 1] = arr->item[i];
arr->size -= 1;
return ret; }
/* parr_sorted_find • O(log n) search in a sorted array, returning entry */
void *
parr_sorted_find(struct parray *arr, void *key, array_cmp_fn cmp) {
int mi, ma, cu, ret;
mi = -1;
ma = arr->size;
while (mi < ma - 1) {
cu = mi + (ma - mi) / 2;
ret = cmp(key, arr->item[cu]);
if (ret == 0) return arr->item[cu];
else if (ret < 0) ma = cu;
else /* if (ret > 0) */ mi = cu; }
return 0; }
/* parr_sorted_find_i • O(log n) search in a sorted array,
* returning index of the smallest element larger than the key */
int
parr_sorted_find_i(struct parray *arr, void *key, array_cmp_fn cmp) {
int mi, ma, cu, ret;
mi = -1;
ma = arr->size;
while (mi < ma - 1) {
cu = mi + (ma - mi) / 2;
ret = cmp(key, arr->item[cu]);
if (ret == 0) {
while (cu < arr->size && ret == 0) {
cu += 1;
ret = cmp(key, arr->item[cu]); }
return cu; }
else if (ret < 0) ma = cu;
else /* if (ret > 0) */ mi = cu; }
return ma; }
/* parr_top • returns the top the stack (i.e. the last element of the array) */
void *
parr_top(struct parray *arr) {
if (arr == 0 || arr->size <= 0) return 0;
else return arr->item[arr->size - 1]; }
/* vim: set filetype=c: */