tornado-core/contracts/ETHMixer.sol
2019-09-25 21:29:41 +03:00

111 lines
4.4 KiB
Solidity

// https://tornado.cash
/*
* d888888P dP a88888b. dP
* 88 88 d8' `88 88
* 88 .d8888b. 88d888b. 88d888b. .d8888b. .d888b88 .d8888b. 88 .d8888b. .d8888b. 88d888b.
* 88 88' `88 88' `88 88' `88 88' `88 88' `88 88' `88 88 88' `88 Y8ooooo. 88' `88
* 88 88. .88 88 88 88 88. .88 88. .88 88. .88 dP Y8. .88 88. .88 88 88 88
* dP `88888P' dP dP dP `88888P8 `88888P8 `88888P' 88 Y88888P' `88888P8 `88888P' dP dP
* ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
*/
pragma solidity ^0.5.8;
import "./Mixer.sol";
import "@openzeppelin/contracts-ethereum-package/contracts/GSN/GSNRecipient.sol";
import "@openzeppelin/contracts-ethereum-package/contracts/GSN/IRelayHub.sol";
contract ETHMixer is Mixer, GSNRecipient {
constructor(
address _verifier,
uint256 _mixDenomination,
uint8 _merkleTreeHeight,
uint256 _emptyElement,
address payable _operator
) Mixer(_verifier, _mixDenomination, _merkleTreeHeight, _emptyElement, _operator) public {
}
function _processWithdraw(address payable _receiver) internal {
_receiver.transfer(mixDenomination);
}
function _processDeposit() internal {
require(msg.value == mixDenomination, "Please send `mixDenomination` ETH along with transaction");
}
function withdrawViaRelayer(uint256[2] memory a, uint256[2][2] memory b, uint256[2] memory c, uint256[3] memory input) public {
uint256 root = input[0];
uint256 nullifierHash = input[1];
address receiver = address(input[2]);
require(!nullifierHashes[nullifierHash], "The note has been already spent");
require(isKnownRoot(root), "Cannot find your merkle root"); // Make sure to use a recent one
require(verifier.verifyProof(a, b, c, input), "Invalid withdraw proof");
nullifierHashes[nullifierHash] = true;
emit Withdraw(receiver, nullifierHash, tx.origin);
// we will process withdraw in postRelayedCall func
}
// gsn related stuff
// this func is called by a Relayer via the RelayerHub before sending a tx
function acceptRelayedCall(
address relay,
address from,
bytes memory encodedFunction,
uint256 transactionFee,
uint256 gasPrice,
uint256 gasLimit,
uint256 nonce,
bytes memory approvalData,
uint256 maxPossibleCharge
) public view returns (uint256, bytes memory) {
// think of a withdraw dry-run
if (!compareBytesWithSelector(encodedFunction, this.withdrawViaRelayer.selector)) {
return (1, "Only withdrawViaRelayer can be called");
}
bytes memory recipient;
assembly {
let dataPointer := add(encodedFunction, 32)
let recipientPointer := mload(add(dataPointer, 324)) // 4 + (8 * 32) + (32) + (32) == selector + proof + root + nullifier
mstore(recipient, 32) // save array length
mstore(add(recipient, 32), recipientPointer) // save recipient address
}
return (0, recipient);
}
// this func is called by RelayerHub right before calling a target func
function preRelayedCall(bytes calldata /*context*/) external returns (bytes32) {}
event Debug(uint actualCharge, bytes context, address recipient);
// this func is called by RelayerHub right after calling a target func
function postRelayedCall(bytes memory context, bool /*success*/, uint actualCharge, bytes32 /*preRetVal*/) public {
IRelayHub relayHub = IRelayHub(getHubAddr());
address payable recipient;
assembly {
recipient := mload(add(context, 32))
}
emit Debug(actualCharge, context, recipient);
recipient.transfer(mixDenomination - actualCharge);
relayHub.depositFor.value(actualCharge)(address(this));
// or we can send actualCharge somewhere else...
}
function compareBytesWithSelector(bytes memory data, bytes4 sel) internal pure returns (bool) {
return data[0] == sel[0]
&& data[1] == sel[1]
&& data[2] == sel[2]
&& data[3] == sel[3];
}
function withdrawFundsFromHub(uint256 amount, address payable dest) external {
require(msg.sender == operator, "unauthorized");
IRelayHub(getHubAddr()).withdraw(amount, dest);
}
function upgradeRelayHub(address newRelayHub) external {
require(msg.sender == operator, "unauthorized");
_upgradeRelayHub(newRelayHub);
}
}