// https://tornado.cash /* * d888888P dP a88888b. dP * 88 88 d8' `88 88 * 88 .d8888b. 88d888b. 88d888b. .d8888b. .d888b88 .d8888b. 88 .d8888b. .d8888b. 88d888b. * 88 88' `88 88' `88 88' `88 88' `88 88' `88 88' `88 88 88' `88 Y8ooooo. 88' `88 * 88 88. .88 88 88 88 88. .88 88. .88 88. .88 dP Y8. .88 88. .88 88 88 88 * dP `88888P' dP dP dP `88888P8 `88888P8 `88888P' 88 Y88888P' `88888P8 `88888P' dP dP * ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo */ pragma solidity ^0.5.8; import "./Mixer.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/GSN/GSNRecipient.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/GSN/IRelayHub.sol"; contract ETHMixer is Mixer, GSNRecipient { constructor( address _verifier, uint256 _mixDenomination, uint8 _merkleTreeHeight, uint256 _emptyElement, address payable _operator ) Mixer(_verifier, _mixDenomination, _merkleTreeHeight, _emptyElement, _operator) public { } function _processWithdraw(address payable _receiver) internal { _receiver.transfer(mixDenomination); } function _processDeposit() internal { require(msg.value == mixDenomination, "Please send `mixDenomination` ETH along with transaction"); } function withdrawViaRelayer(uint256[2] memory a, uint256[2][2] memory b, uint256[2] memory c, uint256[3] memory input) public { uint256 root = input[0]; uint256 nullifierHash = input[1]; address receiver = address(input[2]); require(!nullifierHashes[nullifierHash], "The note has been already spent"); require(isKnownRoot(root), "Cannot find your merkle root"); // Make sure to use a recent one require(verifier.verifyProof(a, b, c, input), "Invalid withdraw proof"); nullifierHashes[nullifierHash] = true; emit Withdraw(receiver, nullifierHash, tx.origin); // we will process withdraw in postRelayedCall func } // gsn related stuff // this func is called by a Relayer via the RelayerHub before sending a tx function acceptRelayedCall( address relay, address from, bytes memory encodedFunction, uint256 transactionFee, uint256 gasPrice, uint256 gasLimit, uint256 nonce, bytes memory approvalData, uint256 maxPossibleCharge ) public view returns (uint256, bytes memory) { // think of a withdraw dry-run if (!compareBytesWithSelector(encodedFunction, this.withdrawViaRelayer.selector)) { return (1, "Only withdrawViaRelayer can be called"); } bytes memory recipient; assembly { let dataPointer := add(encodedFunction, 32) let recipientPointer := mload(add(dataPointer, 324)) // 4 + (8 * 32) + (32) + (32) == selector + proof + root + nullifier mstore(recipient, 32) // save array length mstore(add(recipient, 32), recipientPointer) // save recipient address } return (0, recipient); } // this func is called by RelayerHub right before calling a target func function preRelayedCall(bytes calldata /*context*/) external returns (bytes32) {} event Debug(uint actualCharge, bytes context, address recipient); // this func is called by RelayerHub right after calling a target func function postRelayedCall(bytes memory context, bool /*success*/, uint actualCharge, bytes32 /*preRetVal*/) public { IRelayHub relayHub = IRelayHub(getHubAddr()); address payable recipient; assembly { recipient := mload(add(context, 32)) } emit Debug(actualCharge, context, recipient); recipient.transfer(mixDenomination - actualCharge); relayHub.depositFor.value(actualCharge)(address(this)); // or we can send actualCharge somewhere else... } function compareBytesWithSelector(bytes memory data, bytes4 sel) internal pure returns (bool) { return data[0] == sel[0] && data[1] == sel[1] && data[2] == sel[2] && data[3] == sel[3]; } function withdrawFundsFromHub(uint256 amount, address payable dest) external { require(msg.sender == operator, "unauthorized"); IRelayHub(getHubAddr()).withdraw(amount, dest); } function upgradeRelayHub(address newRelayHub) external { require(msg.sender == operator, "unauthorized"); _upgradeRelayHub(newRelayHub); } }