// https://tornado.cash /* * d888888P dP a88888b. dP * 88 88 d8' `88 88 * 88 .d8888b. 88d888b. 88d888b. .d8888b. .d888b88 .d8888b. 88 .d8888b. .d8888b. 88d888b. * 88 88' `88 88' `88 88' `88 88' `88 88' `88 88' `88 88 88' `88 Y8ooooo. 88' `88 * 88 88. .88 88 88 88 88. .88 88. .88 88. .88 dP Y8. .88 88. .88 88 88 88 * dP `88888P' dP dP dP `88888P8 `88888P8 `88888P' 88 Y88888P' `88888P8 `88888P' dP dP * ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo */ pragma solidity ^0.5.8; import "./Mixer.sol"; contract ERC20Mixer is Mixer { address public token; // mixed token amount uint256 public tokenDenomination; // ether value to cover network fee (for relayer) and to have some ETH on a brand new address uint256 public etherFeeDenomination; constructor( address _verifier, uint256 _etherFeeDenomination, uint8 _merkleTreeHeight, uint256 _emptyElement, address payable _operator, address _token, uint256 _tokenDenomination ) Mixer(_verifier, _merkleTreeHeight, _emptyElement, _operator) public { token = _token; tokenDenomination = _tokenDenomination; etherFeeDenomination = _etherFeeDenomination; } /** @dev Deposit funds into the mixer. The caller must send ETH value equal to `etherFeeDenomination` of this mixer. The caller also has to have at least `tokenDenomination` amount approved for the mixer. @param commitment the note commitment, which is PedersenHash(nullifier + secret) */ function deposit(uint256 commitment) public payable { require(msg.value == etherFeeDenomination, "Please send `etherFeeDenomination` ETH along with transaction"); transferFrom(msg.sender, address(this), tokenDenomination); _deposit(commitment); emit Deposit(commitment, next_index - 1, block.timestamp); } /** @dev Withdraw deposit from the mixer. `a`, `b`, and `c` are zkSNARK proof data, and input is an array of circuit public inputs `input` array consists of: - merkle root of all deposits in the mixer - hash of unique deposit nullifier to prevent double spends - the receiver of funds - optional fee that goes to the transaction sender (usually a relay) */ function withdraw(uint256[2] memory a, uint256[2][2] memory b, uint256[2] memory c, uint256[4] memory input) public { _withdraw(a, b, c, input); address payable receiver = address(input[2]); uint256 fee = input[3]; uint256 nullifierHash = input[1]; require(fee < etherFeeDenomination, "Fee exceeds transfer value"); receiver.transfer(etherFeeDenomination - fee); if (fee > 0) { operator.transfer(fee); } transfer(receiver, tokenDenomination); emit Withdraw(receiver, nullifierHash, fee); } function transferFrom(address from, address to, uint256 amount) internal { bool success; bytes memory data; bytes4 transferFromSelector = 0x23b872dd; (success, data) = token.call( abi.encodeWithSelector( transferFromSelector, from, to, amount ) ); require(success, "not enough allowed tokens"); if (data.length > 0) { assembly { success := mload(add(data, 0x20)) } require(success, "not enough allowed tokens"); } } function transfer(address to, uint256 amount) internal { bool success; bytes memory data; bytes4 transferSelector = 0xa9059cbb; (success, data) = token.call( abi.encodeWithSelector( transferSelector, to, amount ) ); require(success, "not enough tokens"); if (data.length > 0) { assembly { success := mload(add(data, 0x20)) } require(success, "not enough tokens"); } } }