tillitis-key/hw/application_fpga/fw/tk1/main.c
2024-09-23 15:42:24 +02:00

504 lines
12 KiB
C

/*
* Copyright (C) 2022, 2023 - Tillitis AB
* SPDX-License-Identifier: GPL-2.0-only
*/
#include "../tk1_mem.h"
#include "assert.h"
#include "auth_app.h"
#include "blake2s/blake2s.h"
#include "htif.h"
#include "lib.h"
#include "partition_table.h"
#include "preload_app.h"
#include "proto.h"
#include "rng.h"
#include "state.h"
#include "syscall.h"
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
// clang-format off
static volatile uint32_t *uds = (volatile uint32_t *)TK1_MMIO_UDS_FIRST;
static volatile uint32_t *switch_app = (volatile uint32_t *)TK1_MMIO_TK1_SWITCH_APP;
static volatile uint32_t *name0 = (volatile uint32_t *)TK1_MMIO_TK1_NAME0;
static volatile uint32_t *name1 = (volatile uint32_t *)TK1_MMIO_TK1_NAME1;
static volatile uint32_t *ver = (volatile uint32_t *)TK1_MMIO_TK1_VERSION;
static volatile uint32_t *udi = (volatile uint32_t *)TK1_MMIO_TK1_UDI_FIRST;
static volatile uint32_t *cdi = (volatile uint32_t *)TK1_MMIO_TK1_CDI_FIRST;
static volatile uint32_t *app_addr = (volatile uint32_t *)TK1_MMIO_TK1_APP_ADDR;
static volatile uint32_t *app_size = (volatile uint32_t *)TK1_MMIO_TK1_APP_SIZE;
static volatile uint32_t *fw_blake2s_addr = (volatile uint32_t *)TK1_MMIO_TK1_BLAKE2S;
static volatile uint32_t *timer = (volatile uint32_t *)TK1_MMIO_TIMER_TIMER;
static volatile uint32_t *timer_prescaler = (volatile uint32_t *)TK1_MMIO_TIMER_PRESCALER;
static volatile uint32_t *timer_status = (volatile uint32_t *)TK1_MMIO_TIMER_STATUS;
static volatile uint32_t *timer_ctrl = (volatile uint32_t *)TK1_MMIO_TIMER_CTRL;
static volatile uint32_t *ram_addr_rand = (volatile uint32_t *)TK1_MMIO_TK1_RAM_ADDR_RAND;
static volatile uint32_t *ram_data_rand = (volatile uint32_t *)TK1_MMIO_TK1_RAM_DATA_RAND;
// clang-format on
// Context for the loading of a TKey program
struct context {
uint32_t left; // Bytes left to receive
uint8_t digest[32]; // Program digest
uint8_t *loadaddr; // Where we are currently loading a TKey program
bool use_uss; // Use USS?
uint8_t uss[32]; // User Supplied Secret, if any
bool from_flash;
};
static void print_hw_version(void);
static void print_digest(uint8_t *md);
static int compute_app_digest(uint8_t *digest);
static void compute_cdi(const uint8_t *digest, const bool use_uss,
const uint8_t *uss);
static void copy_name(uint8_t *buf, const size_t bufsiz, const uint32_t word);
static enum state initial_commands(const struct frame_header *hdr,
const uint8_t *cmd, enum state state,
struct context *ctx);
static enum state loading_commands(const struct frame_header *hdr,
const uint8_t *cmd, enum state state,
struct context *ctx);
static void run(const struct context *ctx, partition_table_t *part_table);
static void scramble_ram(void);
static void print_hw_version(void)
{
htif_puts("Hello, I'm firmware with");
htif_puts(" tk1_name0:");
htif_putinthex(*name0);
htif_puts(" tk1_name1:");
htif_putinthex(*name1);
htif_puts(" tk1_version:");
htif_putinthex(*ver);
htif_lf();
}
static void print_digest(uint8_t *md)
{
htif_puts("The app digest:\n");
for (int j = 0; j < 4; j++) {
for (int i = 0; i < 8; i++) {
htif_puthex(md[i + 8 * j]);
}
htif_lf();
}
htif_lf();
}
/* Computes the blake2s digest of the app loaded into RAM */
static int compute_app_digest(uint8_t *digest)
{
blake2s_ctx b2s_ctx = {0};
return blake2s(digest, 32, NULL, 0, (const void *)TK1_RAM_BASE,
*app_size, &b2s_ctx);
}
// CDI = blake2s(uds, blake2s(app), uss)
static void compute_cdi(const uint8_t *digest, const bool use_uss,
const uint8_t *uss)
{
uint32_t local_uds[8] = {0};
uint32_t local_cdi[8] = {0};
blake2s_ctx secure_ctx = {0};
uint32_t rnd_sleep = 0;
int blake2err = 0;
// Prepare to sleep a random number of cycles before reading out UDS
*timer_prescaler = 1;
rnd_sleep = rng_get_word();
// Up to 65536 cycles
rnd_sleep &= 0xffff;
*timer = (uint32_t)(rnd_sleep == 0 ? 1 : rnd_sleep);
*timer_ctrl = (1 << TK1_MMIO_TIMER_CTRL_START_BIT);
while (*timer_status & (1 << TK1_MMIO_TIMER_STATUS_RUNNING_BIT)) {
}
blake2err = blake2s_init(&secure_ctx, 32, NULL, 0);
assert(blake2err == 0);
// Update hash with UDS. This means UDS will live for a short
// while on the firmware stack which is in the special fw_ram.
wordcpy_s(local_uds, 8, (void *)uds, 8);
blake2s_update(&secure_ctx, (const void *)local_uds, 32);
(void)secure_wipe(local_uds, sizeof(local_uds));
// Update with TKey program digest
blake2s_update(&secure_ctx, digest, 32);
// Possibly hash in the USS as well
if (use_uss) {
blake2s_update(&secure_ctx, uss, 32);
}
// Write hashed result to Compound Device Identity (CDI)
blake2s_final(&secure_ctx, &local_cdi);
// Clear secure_ctx of any residue of UDS. Don't want to keep
// that for long even though fw_ram is cleared later.
(void)secure_wipe(&secure_ctx, sizeof(secure_ctx));
// CDI only word writable
wordcpy_s((void *)cdi, 8, &local_cdi, 8);
}
static void copy_name(uint8_t *buf, const size_t bufsiz, const uint32_t word)
{
assert(bufsiz >= 4);
buf[0] = word >> 24;
buf[1] = word >> 16;
buf[2] = word >> 8;
buf[3] = word;
}
static enum state initial_commands(const struct frame_header *hdr,
const uint8_t *cmd, enum state state,
struct context *ctx)
{
uint8_t rsp[CMDLEN_MAXBYTES] = {0};
switch (cmd[0]) {
case FW_CMD_NAME_VERSION:
htif_puts("cmd: name-version\n");
if (hdr->len != 1) {
// Bad length
state = FW_STATE_FAIL;
break;
}
copy_name(rsp, CMDLEN_MAXBYTES, *name0);
copy_name(&rsp[4], CMDLEN_MAXBYTES - 4, *name1);
wordcpy_s(&rsp[8], CMDLEN_MAXBYTES / 4 - 2, (void *)ver, 1);
fwreply(*hdr, FW_RSP_NAME_VERSION, rsp);
// still initial state
break;
case FW_CMD_GET_UDI: {
uint32_t udi_words[2];
htif_puts("cmd: get-udi\n");
if (hdr->len != 1) {
// Bad length
state = FW_STATE_FAIL;
break;
}
rsp[0] = STATUS_OK;
wordcpy_s(&udi_words, 2, (void *)udi, 2);
memcpy_s(&rsp[1], CMDLEN_MAXBYTES - 1, &udi_words, 2 * 4);
fwreply(*hdr, FW_RSP_GET_UDI, rsp);
// still initial state
break;
}
case FW_CMD_LOAD_APP: {
uint32_t local_app_size;
htif_puts("cmd: load-app(size, uss)\n");
if (hdr->len != 128) {
// Bad length
state = FW_STATE_FAIL;
break;
}
// cmd[1..4] contains the size.
local_app_size =
cmd[1] + (cmd[2] << 8) + (cmd[3] << 16) + (cmd[4] << 24);
htif_puts("app size: ");
htif_putinthex(local_app_size);
htif_lf();
if (local_app_size == 0 || local_app_size > TK1_APP_MAX_SIZE) {
rsp[0] = STATUS_BAD;
fwreply(*hdr, FW_RSP_LOAD_APP, rsp);
// still initial state
break;
}
*app_size = local_app_size;
// Do we have a USS at all?
if (cmd[5] != 0) {
// Yes
ctx->use_uss = true;
memcpy_s(ctx->uss, 32, &cmd[6], 32);
} else {
ctx->use_uss = false;
}
rsp[0] = STATUS_OK;
fwreply(*hdr, FW_RSP_LOAD_APP, rsp);
assert(*app_size != 0);
assert(*app_size <= TK1_APP_MAX_SIZE);
ctx->left = *app_size;
state = FW_STATE_LOADING;
break;
}
case FW_CMD_LOAD_APP_FLASH:
rsp[0] = STATUS_OK;
fwreply(*hdr, FW_RSP_LOAD_APP_FLASH, rsp);
state = FW_STATE_LOAD_APP_FLASH;
break;
default:
htif_puts("Got unknown firmware cmd: 0x");
htif_puthex(cmd[0]);
htif_lf();
state = FW_STATE_FAIL;
break;
}
return state;
}
static enum state loading_commands(const struct frame_header *hdr,
const uint8_t *cmd, enum state state,
struct context *ctx)
{
uint8_t rsp[CMDLEN_MAXBYTES] = {0};
uint32_t nbytes = 0;
switch (cmd[0]) {
case FW_CMD_LOAD_APP_DATA:
htif_puts("cmd: load-app-data\n");
if (hdr->len != 128) {
// Bad length
state = FW_STATE_FAIL;
break;
}
if (ctx->left > (128 - 1)) {
nbytes = 128 - 1;
} else {
nbytes = ctx->left;
}
memcpy_s(ctx->loadaddr, ctx->left, cmd + 1, nbytes);
/*@-mustfreeonly@*/
ctx->loadaddr += nbytes;
/*@+mustfreeonly@*/
ctx->left -= nbytes;
if (ctx->left == 0) {
htif_puts("Fully loaded ");
htif_putinthex(*app_size);
htif_lf();
// Compute Blake2S digest of the app,
// storing it for FW_STATE_RUN
int digest_err = compute_app_digest(ctx->digest);
assert(digest_err == 0);
print_digest(ctx->digest);
// And return the digest in final
// response
rsp[0] = STATUS_OK;
memcpy_s(&rsp[1], CMDLEN_MAXBYTES - 1, ctx->digest,
32);
fwreply(*hdr, FW_RSP_LOAD_APP_DATA_READY, rsp);
state = FW_STATE_RUN;
break;
}
rsp[0] = STATUS_OK;
fwreply(*hdr, FW_RSP_LOAD_APP_DATA, rsp);
// still loading state
break;
default:
htif_puts("Got unknown firmware cmd: 0x");
htif_puthex(cmd[0]);
htif_lf();
state = FW_STATE_FAIL;
break;
}
return state;
}
static void run(const struct context *ctx, partition_table_t *part_table)
{
/* At this point we expect an app to be loaded into RAM */
*app_addr = TK1_RAM_BASE;
// CDI = hash(uds, hash(app), uss)
compute_cdi(ctx->digest, ctx->use_uss, ctx->uss);
if (ctx->from_flash) {
if (part_table->pre_app_data.status == 0x02) {
htif_puts("Create auth\n");
auth_app_create(&part_table->pre_app_data.auth);
part_table->pre_app_data.status = 0x01;
part_table_write(part_table);
}
if (!auth_app_authenticate(&part_table->pre_app_data.auth)) {
htif_puts("!Authenticated\n");
assert(1 == 2);
}
}
htif_puts("Flipping to app mode!\n");
htif_puts("Jumping to ");
htif_putinthex(*app_addr);
htif_lf();
// Clear the firmware stack
// clang-format off
#ifndef S_SPLINT_S
asm volatile(
"li a0, 0xd0000000;" // FW_RAM
"li a1, 0xd0000800;" // End of 2 KB FW_RAM (just past the end)
"loop:;"
"sw zero, 0(a0);"
"addi a0, a0, 4;"
"blt a0, a1, loop;"
::: "memory");
#endif
// clang-format on
// Flip over to application mode
*switch_app = 1;
// XXX Firmware stack now no longer available
// Don't use any function calls!
// Jump to app - doesn't return
// clang-format off
#ifndef S_SPLINT_S
asm volatile(
// Get value at TK1_MMIO_TK1_APP_ADDR
"lui a0,0xff000;"
"lw a0,0x030(a0);"
// Jump to it
"jalr x0,0(a0);"
::: "memory");
#endif
// clang-format on
__builtin_unreachable();
}
static void scramble_ram(void)
{
uint32_t *ram = (uint32_t *)(TK1_RAM_BASE);
// Fill RAM with random data
// Get random state and accumulator seeds.
uint32_t data_state = rng_get_word();
uint32_t data_acc = rng_get_word();
for (uint32_t w = 0; w < TK1_RAM_SIZE / 4; w++) {
data_state = rng_xorwow(data_state, data_acc);
ram[w] = data_state;
}
// Set RAM address and data scrambling parameters
*ram_addr_rand = rng_get_word();
*ram_data_rand = rng_get_word();
}
int main(void)
{
struct context ctx = {0};
struct frame_header hdr = {0};
uint8_t cmd[CMDLEN_MAXBYTES] = {0};
enum state state = FW_STATE_INITIAL;
partition_table_t part_table;
ctx.from_flash = false;
print_hw_version();
// Let the app know the function address for blake2s()
*fw_blake2s_addr = (uint32_t)syscall;
/**fw_blake2s_addr = (uint32_t)blake2s;*/
/*@-mustfreeonly@*/
/* Yes, splint, this points directly to RAM and we don't care
* about freeing anything was pointing to 0x0 before.
*/
ctx.loadaddr = (uint8_t *)TK1_RAM_BASE;
/*@+mustfreeonly@*/
ctx.use_uss = false;
scramble_ram();
/*readbyte(); // wait for input to start*/
part_table_init(&part_table);
/* Force a preloaded app to start, to create the authentication digest
*/
if (preload_check_valid_app(&part_table) &&
part_table.pre_app_data.status == 0x02) {
state = FW_STATE_LOAD_APP_FLASH;
}
for (;;) {
switch (state) {
case FW_STATE_INITIAL:
if (readcommand(&hdr, cmd, state) == -1) {
state = FW_STATE_FAIL;
break;
}
state = initial_commands(&hdr, cmd, state, &ctx);
break;
case FW_STATE_LOADING:
if (readcommand(&hdr, cmd, state) == -1) {
state = FW_STATE_FAIL;
break;
}
state = loading_commands(&hdr, cmd, state, &ctx);
break;
case FW_STATE_LOAD_APP_FLASH:
if (preload_start(&part_table) == -1) {
state = FW_STATE_FAIL;
break;
}
*app_size = part_table.pre_app_data.size;
assert(*app_size <= TK1_APP_MAX_SIZE);
int digest_err = compute_app_digest(ctx.digest);
assert(digest_err == 0);
print_digest(ctx.digest);
ctx.use_uss = false;
ctx.from_flash = true;
state = FW_STATE_RUN;
break;
case FW_STATE_RUN:
run(&ctx, &part_table);
break; // This is never reached!
case FW_STATE_FAIL:
// fallthrough
default:
htif_puts("firmware state 0x");
htif_puthex(state);
htif_lf();
assert(1 == 2);
break; // Not reached
}
}
/*@ -compdestroy @*/
/* We don't care about memory leaks here. */
return (int)0xcafebabe;
}