2024-03-19 08:41:39 +01:00

403 lines
9.7 KiB
C

/*
* Copyright (C) 2022, 2023 - Tillitis AB
* SPDX-License-Identifier: GPL-2.0-only
*/
#include "../tk1/blake2s/blake2s.h"
#include "../tk1/lib.h"
#include "../tk1/proto.h"
#include "../tk1/types.h"
#include "../tk1_mem.h"
// clang-format off
volatile uint32_t *tk1name0 = (volatile uint32_t *)TK1_MMIO_TK1_NAME0;
volatile uint32_t *tk1name1 = (volatile uint32_t *)TK1_MMIO_TK1_NAME1;
volatile uint32_t *uds = (volatile uint32_t *)TK1_MMIO_UDS_FIRST;
volatile uint32_t *cdi = (volatile uint32_t *)TK1_MMIO_TK1_CDI_FIRST;
volatile uint32_t *udi = (volatile uint32_t *)TK1_MMIO_TK1_UDI_FIRST;
volatile uint32_t *switch_app = (volatile uint32_t *)TK1_MMIO_TK1_SWITCH_APP;
volatile uint8_t *fw_ram = (volatile uint8_t *)TK1_MMIO_FW_RAM_BASE;
volatile uint32_t *timer = (volatile uint32_t *)TK1_MMIO_TIMER_TIMER;
volatile uint32_t *timer_prescaler = (volatile uint32_t *)TK1_MMIO_TIMER_PRESCALER;
volatile uint32_t *timer_status = (volatile uint32_t *)TK1_MMIO_TIMER_STATUS;
volatile uint32_t *timer_ctrl = (volatile uint32_t *)TK1_MMIO_TIMER_CTRL;
volatile uint32_t *trng_status = (volatile uint32_t *)TK1_MMIO_TRNG_STATUS;
volatile uint32_t *trng_entropy = (volatile uint32_t *)TK1_MMIO_TRNG_ENTROPY;
volatile uint32_t *fw_blake2s_addr = (volatile uint32_t *)TK1_MMIO_TK1_BLAKE2S;
// clang-format on
#define UDS_WORDS 8
#define UDI_WORDS 2
#define CDI_WORDS 8
void *memcpy(void *dest, const void *src, size_t n)
{
uint8_t *src_byte = (uint8_t *)src;
uint8_t *dest_byte = (uint8_t *)dest;
for (int i = 0; i < n; i++) {
dest_byte[i] = src_byte[i];
}
return dest;
}
void puts(char *reason)
{
for (char *c = reason; *c != '\0'; c++) {
writebyte(*c);
}
}
void putsn(char *p, int n)
{
for (int i = 0; i < n; i++) {
writebyte(p[i]);
}
}
void puthex(uint8_t c)
{
unsigned int upper = (c >> 4) & 0xf;
unsigned int lower = c & 0xf;
writebyte(upper < 10 ? '0' + upper : 'a' - 10 + upper);
writebyte(lower < 10 ? '0' + lower : 'a' - 10 + lower);
}
void puthexn(uint8_t *p, int n)
{
for (int i = 0; i < n; i++) {
puthex(p[i]);
}
}
void hexdump(void *buf, int len)
{
uint8_t *byte_buf = (uint8_t *)buf;
for (int i = 0; i < len; i++) {
puthex(byte_buf[i]);
if (i % 2 == 1) {
writebyte(' ');
}
if (i != 1 && i % 16 == 1) {
puts("\r\n");
}
}
puts("\r\n");
}
void reverseword(uint32_t *wordp)
{
*wordp = ((*wordp & 0xff000000) >> 24) | ((*wordp & 0x00ff0000) >> 8) |
((*wordp & 0x0000ff00) << 8) | ((*wordp & 0x000000ff) << 24);
}
uint32_t wait_timer_tick(uint32_t last_timer)
{
uint32_t newtimer;
for (;;) {
newtimer = *timer;
if (newtimer != last_timer) {
return newtimer;
}
}
}
void zero_fwram(void)
{
for (int i = 0; i < TK1_MMIO_FW_RAM_SIZE; i++) {
fw_ram[i] = 0x00;
}
}
int check_fwram_zero_except(unsigned int offset, uint8_t expected_val)
{
int failed = 0;
for (unsigned int i = 0; i < TK1_MMIO_FW_RAM_SIZE; i++) {
uint32_t addr = TK1_MMIO_FW_RAM_BASE + i;
uint8_t *p = (uint8_t *)addr;
uint8_t val = *(volatile uint8_t *)p;
int failed_now = 0;
if (i == offset) {
if (val != expected_val) {
failed_now = 1;
puts(" wrong value at: ");
}
} else {
if (val != 0) {
failed_now = 1;
puts(" not zero at: ");
}
}
if (failed_now) {
failed = 1;
reverseword(&addr);
puthexn((uint8_t *)&addr, 4);
puts("\r\n");
}
}
return failed;
}
void failmsg(char *s)
{
puts("FAIL: ");
puts(s);
puts("\r\n");
}
int main(void)
{
// Function pointer to blake2s()
volatile int (*fw_blake2s)(void *, unsigned long, const void *,
unsigned long, const void *, unsigned long,
blake2s_ctx *);
uint8_t in;
// Hard coded test UDS in ../../data/uds.hex
// clang-format off
uint32_t uds_test[8] = {
0x80818283,
0x94959697,
0xa0a1a2a3,
0xb4b5b6b7,
0xc0c1c2c3,
0xd4d5d6d7,
0xe0e1e2e3,
0xf4f5f6f7,
};
// clang-format on
// Wait for terminal program and a character to be typed
in = readbyte();
puts("\r\nI'm testfw on:");
// Output the TK1 core's NAME0 and NAME1
uint32_t name;
wordcpy_s(&name, 1, (void *)tk1name0, 1);
reverseword(&name);
putsn((char *)&name, 4);
puts(" ");
wordcpy_s(&name, 1, (void *)tk1name1, 1);
reverseword(&name);
putsn((char *)&name, 4);
puts("\r\n");
uint32_t zeros[8];
memset(zeros, 0, 8 * 4);
int anyfailed = 0;
uint32_t uds_local[UDS_WORDS];
// Should get non-empty UDS
wordcpy_s(uds_local, UDS_WORDS, (void *)uds, UDS_WORDS);
if (memeq(uds_local, zeros, UDS_WORDS * 4)) {
failmsg("UDS empty");
anyfailed = 1;
}
puts("\r\nUDS: ");
for (int i = 0; i < UDS_WORDS * 4; i++) {
puthex(((uint8_t *)uds_local)[i]);
}
puts("\r\n");
if (!memeq(uds_local, uds_test, UDS_WORDS * 4)) {
failmsg("UDS not equal to test UDS");
anyfailed = 1;
}
// Should NOT be able to read from UDS again
wordcpy_s(uds_local, UDS_WORDS, (void *)uds, UDS_WORDS);
if (!memeq(uds_local, zeros, UDS_WORDS * 4)) {
failmsg("Read UDS a second time");
anyfailed = 1;
}
uint32_t udi_local[UDI_WORDS];
// Should get non-empty UDI
wordcpy_s(udi_local, UDI_WORDS, (void *)udi, UDI_WORDS);
if (memeq(udi_local, zeros, UDI_WORDS * 4)) {
failmsg("UDI empty");
anyfailed = 1;
}
// Should be able to write to CDI in fw (non-app) mode.
uint32_t cdi_writetest[CDI_WORDS] = {0xdeafbeef, 0xdeafbeef, 0xdeafbeef,
0xdeafbeef, 0xdeafbeef, 0xdeafbeef,
0xdeafbeef, 0xdeafbeef};
uint32_t cdi_readback[CDI_WORDS];
wordcpy_s((void *)cdi, CDI_WORDS, cdi_writetest, CDI_WORDS);
wordcpy_s(cdi_readback, CDI_WORDS, (void *)cdi, CDI_WORDS);
if (!memeq(cdi_writetest, cdi_readback, CDI_WORDS * 4)) {
failmsg("Can't write CDI in fw mode");
anyfailed = 1;
}
// Should be able to read bytes from CDI.
uint8_t cdi_readback_bytes[CDI_WORDS * 4];
memcpy(cdi_readback_bytes, (void *)cdi, CDI_WORDS * 4);
if (!memeq(cdi_writetest, cdi_readback_bytes, CDI_WORDS * 4)) {
failmsg("Can't read bytes from CDI");
anyfailed = 1;
}
// Test FW_RAM.
puts("\r\nTesting FW_RAM (takes 15s on hw)...\r\n");
for (unsigned int i = 0; i < TK1_MMIO_FW_RAM_SIZE; i++) {
zero_fwram();
*(volatile uint8_t *)(TK1_MMIO_FW_RAM_BASE + i) = 0x42;
int fwram_fail = check_fwram_zero_except(i, 0x42);
if (fwram_fail) {
anyfailed = 1;
}
}
uint32_t sw = *switch_app;
if (sw != 0) {
failmsg("switch_app is not 0 in fw mode");
anyfailed = 1;
}
// Store function pointer to blake2s() so it's reachable from app
*fw_blake2s_addr = (uint32_t)blake2s;
// Turn on application mode.
// -------------------------
*switch_app = 1;
sw = *switch_app;
if (sw != 0xffffffff) {
failmsg("switch_app is not 0xffffffff in app mode");
anyfailed = 1;
}
// Should NOT be able to read from UDS in app-mode.
wordcpy_s(uds_local, UDS_WORDS, (void *)uds, UDS_WORDS);
if (!memeq(uds_local, zeros, UDS_WORDS * 4)) {
failmsg("Read from UDS in app-mode");
anyfailed = 1;
}
// Should NOT be able to read from UDI in app-mode.
wordcpy_s(udi_local, UDI_WORDS, (void *)udi, UDI_WORDS);
if (!memeq(udi_local, zeros, UDI_WORDS * 4)) {
failmsg("Read from UDI in app-mode");
anyfailed = 1;
}
uint32_t cdi_local[CDI_WORDS];
uint32_t cdi_local2[CDI_WORDS];
wordcpy_s(cdi_local, CDI_WORDS, (void *)cdi, CDI_WORDS);
// Write to CDI should NOT have any effect in app mode.
wordcpy_s((void *)cdi, CDI_WORDS, zeros, CDI_WORDS);
wordcpy_s(cdi_local2, CDI_WORDS, (void *)cdi, CDI_WORDS);
if (!memeq(cdi_local, cdi_local2, CDI_WORDS * 4)) {
failmsg("Write to CDI in app-mode");
anyfailed = 1;
}
// Test FW_RAM.
*fw_ram = 0x21;
if (*fw_ram == 0x21) {
failmsg("Write and read FW RAM in app-mode");
anyfailed = 1;
}
puts("\r\nTesting timer... 3");
// Matching clock at 18 MHz, giving us timer in seconds
*timer_prescaler = 18 * 1000000;
// Test timer expiration after 1s
*timer = 1;
// Start the timer
*timer_ctrl = (1 << TK1_MMIO_TIMER_CTRL_START_BIT);
while (*timer_status & (1 << TK1_MMIO_TIMER_STATUS_RUNNING_BIT)) {
}
// Now timer has expired and is ready to run again
puts(" 2");
// Test to interrupt a timer - and reads from timer register
// Starting 10s timer and interrupting it in 3s...
*timer = 10;
*timer_ctrl = (1 << TK1_MMIO_TIMER_CTRL_START_BIT);
uint32_t last_timer = 10;
for (int i = 0; i < 3; i++) {
last_timer = wait_timer_tick(last_timer);
}
// Stop the timer
*timer_ctrl = (1 << TK1_MMIO_TIMER_CTRL_STOP_BIT);
puts(" 1. done.\r\n");
if (*timer_status & (1 << TK1_MMIO_TIMER_STATUS_RUNNING_BIT)) {
failmsg("Timer didn't stop");
anyfailed = 1;
}
if (*timer != 10) {
failmsg("Timer didn't reset to 10");
anyfailed = 1;
}
// Testing the blake2s MMIO in app mode
fw_blake2s = (volatile int (*)(void *, unsigned long, const void *,
unsigned long, const void *,
unsigned long, blake2s_ctx *)) *
fw_blake2s_addr;
char msg[17] = "dldlkjsdkljdslsdj";
uint32_t digest0[8];
uint32_t digest1[8];
blake2s_ctx b2s_ctx;
blake2s(&digest0[0], 32, NULL, 0, &msg, 17, &b2s_ctx);
fw_blake2s(&digest1[0], 32, NULL, 0, &msg, 17, &b2s_ctx);
puts("\r\ndigest #0: \r\n");
hexdump((uint8_t *)digest0, 32);
puts("digest #1: \r\n");
hexdump((uint8_t *)digest1, 32);
if (!memeq(digest0, digest1, 32)) {
failmsg("Digests not the same");
anyfailed = 1;
}
// Check and display test results.
puts("\r\n--> ");
if (anyfailed) {
puts("Some test FAILED!\r\n");
} else {
puts("All tests passed.\r\n");
}
puts("\r\nHere are 256 bytes from the TRNG:\r\n");
for (int j = 0; j < 8; j++) {
for (int i = 0; i < 8; i++) {
while ((*trng_status &
(1 << TK1_MMIO_TRNG_STATUS_READY_BIT)) == 0) {
}
uint32_t rnd = *trng_entropy;
puthexn((uint8_t *)&rnd, 4);
puts(" ");
}
puts("\r\n");
}
puts("\r\n");
puts("Now echoing what you type...\r\n");
for (;;) {
in = readbyte(); // blocks
writebyte(in);
}
}