mirror of
https://github.com/tillitis/tillitis-key1.git
synced 2025-01-22 05:11:27 -05:00
4d4db70590
Use _RAM_ADDR_RAND instead of _RAM_ASLR since this is not OS-level ASLR we're talking about. It's address randomization as seen from outside of the CPU, not from the process running inside it. Ordinary ASLR is visible from the CPU.
441 lines
11 KiB
C
441 lines
11 KiB
C
/*
|
|
* Copyright (C) 2022, 2023 - Tillitis AB
|
|
* SPDX-License-Identifier: GPL-2.0-only
|
|
*/
|
|
|
|
#include "../tk1_mem.h"
|
|
#include "assert.h"
|
|
#include "blake2s/blake2s.h"
|
|
#include "led.h"
|
|
#include "lib.h"
|
|
#include "proto.h"
|
|
#include "state.h"
|
|
#include "types.h"
|
|
|
|
// clang-format off
|
|
static volatile uint32_t *uds = (volatile uint32_t *)TK1_MMIO_UDS_FIRST;
|
|
static volatile uint32_t *switch_app = (volatile uint32_t *)TK1_MMIO_TK1_SWITCH_APP;
|
|
static volatile uint32_t *name0 = (volatile uint32_t *)TK1_MMIO_TK1_NAME0;
|
|
static volatile uint32_t *name1 = (volatile uint32_t *)TK1_MMIO_TK1_NAME1;
|
|
static volatile uint32_t *ver = (volatile uint32_t *)TK1_MMIO_TK1_VERSION;
|
|
static volatile uint32_t *udi = (volatile uint32_t *)TK1_MMIO_TK1_UDI_FIRST;
|
|
static volatile uint32_t *cdi = (volatile uint32_t *)TK1_MMIO_TK1_CDI_FIRST;
|
|
static volatile uint32_t *app_addr = (volatile uint32_t *)TK1_MMIO_TK1_APP_ADDR;
|
|
static volatile uint32_t *app_size = (volatile uint32_t *)TK1_MMIO_TK1_APP_SIZE;
|
|
static volatile uint32_t *fw_blake2s_addr = (volatile uint32_t *)TK1_MMIO_TK1_BLAKE2S;
|
|
static volatile uint32_t *trng_status = (volatile uint32_t *)TK1_MMIO_TRNG_STATUS;
|
|
static volatile uint32_t *trng_entropy = (volatile uint32_t *)TK1_MMIO_TRNG_ENTROPY;
|
|
static volatile uint32_t *timer = (volatile uint32_t *)TK1_MMIO_TIMER_TIMER;
|
|
static volatile uint32_t *timer_prescaler = (volatile uint32_t *)TK1_MMIO_TIMER_PRESCALER;
|
|
static volatile uint32_t *timer_status = (volatile uint32_t *)TK1_MMIO_TIMER_STATUS;
|
|
static volatile uint32_t *timer_ctrl = (volatile uint32_t *)TK1_MMIO_TIMER_CTRL;
|
|
static volatile uint32_t *ram_rand = (volatile uint32_t *)TK1_MMIO_TK1_RAM_ADDR_RAND;
|
|
static volatile uint32_t *ram_scramble = (volatile uint32_t *)TK1_MMIO_TK1_RAM_SCRAMBLE;
|
|
// clang-format on
|
|
|
|
// Context for the loading of a TKey program
|
|
struct context {
|
|
uint32_t left; // Bytes left to receive
|
|
uint8_t digest[32]; // Program digest
|
|
uint8_t *loadaddr; // Where we are currently loading a TKey program
|
|
uint8_t use_uss; // Use USS?
|
|
uint8_t uss[32]; // User Supplied Secret, if any
|
|
};
|
|
|
|
static void print_hw_version(void);
|
|
static void print_digest(uint8_t *md);
|
|
static uint32_t rnd_word(void);
|
|
static void compute_cdi(const uint8_t *digest, const uint8_t use_uss,
|
|
const uint8_t *uss);
|
|
static void copy_name(uint8_t *buf, const size_t bufsiz, const uint32_t word);
|
|
static enum state initial_commands(const struct frame_header *hdr,
|
|
const uint8_t *cmd, enum state state,
|
|
struct context *ctx);
|
|
static enum state loading_commands(const struct frame_header *hdr,
|
|
const uint8_t *cmd, enum state state,
|
|
struct context *ctx);
|
|
static void run(const struct context *ctx);
|
|
static void scramble_ram(void);
|
|
|
|
static void print_hw_version(void)
|
|
{
|
|
htif_puts("Hello, I'm firmware with");
|
|
htif_puts(" tk1_name0:");
|
|
htif_putinthex(*name0);
|
|
htif_puts(" tk1_name1:");
|
|
htif_putinthex(*name1);
|
|
htif_puts(" tk1_version:");
|
|
htif_putinthex(*ver);
|
|
htif_lf();
|
|
}
|
|
|
|
static void print_digest(uint8_t *md)
|
|
{
|
|
htif_puts("The app digest:\n");
|
|
for (int j = 0; j < 4; j++) {
|
|
for (int i = 0; i < 8; i++) {
|
|
htif_puthex(md[i + 8 * j]);
|
|
}
|
|
htif_lf();
|
|
}
|
|
htif_lf();
|
|
}
|
|
|
|
static uint32_t rnd_word(void)
|
|
{
|
|
while ((*trng_status & (1 << TK1_MMIO_TRNG_STATUS_READY_BIT)) == 0) {
|
|
}
|
|
return *trng_entropy;
|
|
}
|
|
|
|
// CDI = blake2s(uds, blake2s(app), uss)
|
|
static void compute_cdi(const uint8_t *digest, const uint8_t use_uss,
|
|
const uint8_t *uss)
|
|
{
|
|
uint32_t local_uds[8];
|
|
uint32_t local_cdi[8];
|
|
blake2s_ctx secure_ctx = {0};
|
|
uint32_t rnd_sleep = 0;
|
|
int blake2err = 0;
|
|
|
|
// Prepare to sleep a random number of cycles before reading out UDS
|
|
*timer_prescaler = 1;
|
|
rnd_sleep = rnd_word();
|
|
// Up to 65536 cycles
|
|
rnd_sleep &= 0xffff;
|
|
*timer = (uint32_t)(rnd_sleep == 0 ? 1 : rnd_sleep);
|
|
*timer_ctrl = (1 << TK1_MMIO_TIMER_CTRL_START_BIT);
|
|
while (*timer_status & (1 << TK1_MMIO_TIMER_STATUS_RUNNING_BIT)) {
|
|
}
|
|
|
|
blake2err = blake2s_init(&secure_ctx, 32, NULL, 0);
|
|
assert(blake2err == 0);
|
|
|
|
// Update hash with UDS. This means UDS will live for a short
|
|
// while on the firmware stack which is in the special fw_ram.
|
|
wordcpy_s(local_uds, 8, (void *)uds, 8);
|
|
blake2s_update(&secure_ctx, (const void *)local_uds, 32);
|
|
memset(local_uds, 0, 32);
|
|
|
|
// Update with TKey program digest
|
|
blake2s_update(&secure_ctx, digest, 32);
|
|
|
|
// Possibly hash in the USS as well
|
|
if (use_uss != 0) {
|
|
blake2s_update(&secure_ctx, uss, 32);
|
|
}
|
|
|
|
// Write hashed result to Compound Device Identity (CDI)
|
|
blake2s_final(&secure_ctx, &local_cdi);
|
|
|
|
// Clear secure_ctx of any residue of UDS. Don't want to keep
|
|
// that for long even though fw_ram is cleared later.
|
|
(void)memset(&secure_ctx, 0, sizeof(secure_ctx));
|
|
|
|
// CDI only word writable
|
|
wordcpy_s((void *)cdi, 8, &local_cdi, 8);
|
|
}
|
|
|
|
static void copy_name(uint8_t *buf, const size_t bufsiz, const uint32_t word)
|
|
{
|
|
assert(bufsiz >= 4);
|
|
|
|
buf[0] = word >> 24;
|
|
buf[1] = word >> 16;
|
|
buf[2] = word >> 8;
|
|
buf[3] = word;
|
|
}
|
|
|
|
static enum state initial_commands(const struct frame_header *hdr,
|
|
const uint8_t *cmd, enum state state,
|
|
struct context *ctx)
|
|
{
|
|
uint8_t rsp[CMDLEN_MAXBYTES] = {0};
|
|
|
|
switch (cmd[0]) {
|
|
case FW_CMD_NAME_VERSION:
|
|
htif_puts("cmd: name-version\n");
|
|
if (hdr->len != 1) {
|
|
// Bad length
|
|
state = FW_STATE_FAIL;
|
|
break;
|
|
}
|
|
|
|
copy_name(rsp, CMDLEN_MAXBYTES, *name0);
|
|
copy_name(&rsp[4], CMDLEN_MAXBYTES - 4, *name1);
|
|
wordcpy_s(&rsp[8], CMDLEN_MAXBYTES / 4 - 2, (void *)ver, 1);
|
|
|
|
fwreply(*hdr, FW_RSP_NAME_VERSION, rsp);
|
|
// still initial state
|
|
break;
|
|
|
|
case FW_CMD_GET_UDI: {
|
|
uint32_t udi_words[2];
|
|
|
|
htif_puts("cmd: get-udi\n");
|
|
if (hdr->len != 1) {
|
|
// Bad length
|
|
state = FW_STATE_FAIL;
|
|
break;
|
|
}
|
|
|
|
rsp[0] = STATUS_OK;
|
|
wordcpy_s(&udi_words, 2, (void *)udi, 2);
|
|
memcpy_s(&rsp[1], CMDLEN_MAXBYTES - 1, &udi_words, 2 * 4);
|
|
fwreply(*hdr, FW_RSP_GET_UDI, rsp);
|
|
// still initial state
|
|
break;
|
|
}
|
|
|
|
case FW_CMD_LOAD_APP: {
|
|
uint32_t local_app_size;
|
|
|
|
htif_puts("cmd: load-app(size, uss)\n");
|
|
if (hdr->len != 128) {
|
|
// Bad length
|
|
state = FW_STATE_FAIL;
|
|
break;
|
|
}
|
|
|
|
// cmd[1..4] contains the size.
|
|
local_app_size =
|
|
cmd[1] + (cmd[2] << 8) + (cmd[3] << 16) + (cmd[4] << 24);
|
|
|
|
htif_puts("app size: ");
|
|
htif_putinthex(local_app_size);
|
|
htif_lf();
|
|
|
|
if (local_app_size == 0 || local_app_size > TK1_APP_MAX_SIZE) {
|
|
rsp[0] = STATUS_BAD;
|
|
fwreply(*hdr, FW_RSP_LOAD_APP, rsp);
|
|
// still initial state
|
|
break;
|
|
}
|
|
|
|
*app_size = local_app_size;
|
|
|
|
// Do we have a USS at all?
|
|
if (cmd[5] != 0) {
|
|
// Yes
|
|
ctx->use_uss = TRUE;
|
|
memcpy_s(ctx->uss, 32, &cmd[6], 32);
|
|
} else {
|
|
ctx->use_uss = FALSE;
|
|
}
|
|
|
|
rsp[0] = STATUS_OK;
|
|
fwreply(*hdr, FW_RSP_LOAD_APP, rsp);
|
|
|
|
assert(*app_size != 0);
|
|
assert(*app_size <= TK1_APP_MAX_SIZE);
|
|
|
|
ctx->left = *app_size;
|
|
|
|
state = FW_STATE_LOADING;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
htif_puts("Got unknown firmware cmd: 0x");
|
|
htif_puthex(cmd[0]);
|
|
htif_lf();
|
|
state = FW_STATE_FAIL;
|
|
break;
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
static enum state loading_commands(const struct frame_header *hdr,
|
|
const uint8_t *cmd, enum state state,
|
|
struct context *ctx)
|
|
{
|
|
uint8_t rsp[CMDLEN_MAXBYTES] = {0};
|
|
uint32_t nbytes = 0;
|
|
|
|
switch (cmd[0]) {
|
|
case FW_CMD_LOAD_APP_DATA:
|
|
htif_puts("cmd: load-app-data\n");
|
|
if (hdr->len != 128) {
|
|
// Bad length
|
|
state = FW_STATE_FAIL;
|
|
break;
|
|
}
|
|
|
|
if (ctx->left > (128 - 1)) {
|
|
nbytes = 128 - 1;
|
|
} else {
|
|
nbytes = ctx->left;
|
|
}
|
|
memcpy_s(ctx->loadaddr, ctx->left, cmd + 1, nbytes);
|
|
ctx->loadaddr += nbytes;
|
|
ctx->left -= nbytes;
|
|
|
|
if (ctx->left == 0) {
|
|
blake2s_ctx b2s_ctx = {0};
|
|
int blake2err = 0;
|
|
|
|
htif_puts("Fully loaded ");
|
|
htif_putinthex(*app_size);
|
|
htif_lf();
|
|
|
|
// Compute Blake2S digest of the app,
|
|
// storing it for FW_STATE_RUN
|
|
blake2err = blake2s(&ctx->digest, 32, NULL, 0,
|
|
(const void *)TK1_RAM_BASE,
|
|
*app_size, &b2s_ctx);
|
|
assert(blake2err == 0);
|
|
print_digest(ctx->digest);
|
|
|
|
// And return the digest in final
|
|
// response
|
|
rsp[0] = STATUS_OK;
|
|
memcpy_s(&rsp[1], CMDLEN_MAXBYTES - 1, &ctx->digest,
|
|
32);
|
|
fwreply(*hdr, FW_RSP_LOAD_APP_DATA_READY, rsp);
|
|
|
|
state = FW_STATE_RUN;
|
|
break;
|
|
}
|
|
|
|
rsp[0] = STATUS_OK;
|
|
fwreply(*hdr, FW_RSP_LOAD_APP_DATA, rsp);
|
|
// still loading state
|
|
break;
|
|
|
|
default:
|
|
htif_puts("Got unknown firmware cmd: 0x");
|
|
htif_puthex(cmd[0]);
|
|
htif_lf();
|
|
state = FW_STATE_FAIL;
|
|
break;
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
static void run(const struct context *ctx)
|
|
{
|
|
*app_addr = TK1_RAM_BASE;
|
|
|
|
// CDI = hash(uds, hash(app), uss)
|
|
compute_cdi(ctx->digest, ctx->use_uss, ctx->uss);
|
|
|
|
htif_puts("Flipping to app mode!\n");
|
|
htif_puts("Jumping to ");
|
|
htif_putinthex(*app_addr);
|
|
htif_lf();
|
|
|
|
// Clear the firmware stack
|
|
// clang-format off
|
|
#ifndef S_SPLINT_S
|
|
asm volatile(
|
|
"li a0, 0xd0000000;" // FW_RAM
|
|
"li a1, 0xd0000800;" // End of 2 KB FW_RAM (just past the end)
|
|
"loop:;"
|
|
"sw zero, 0(a0);"
|
|
"addi a0, a0, 4;"
|
|
"blt a0, a1, loop;"
|
|
::: "memory");
|
|
#endif
|
|
// clang-format on
|
|
|
|
// Flip over to application mode
|
|
*switch_app = 1;
|
|
|
|
// XXX Firmware stack now no longer available
|
|
// Don't use any function calls!
|
|
|
|
// Jump to app - doesn't return
|
|
// clang-format off
|
|
#ifndef S_SPLINT_S
|
|
asm volatile(
|
|
// Get value at TK1_MMIO_TK1_APP_ADDR
|
|
"lui a0,0xff000;"
|
|
"lw a0,0x030(a0);"
|
|
// Jump to it
|
|
"jalr x0,0(a0);"
|
|
::: "memory");
|
|
#endif
|
|
// clang-format on
|
|
|
|
__builtin_unreachable();
|
|
}
|
|
|
|
static void scramble_ram(void)
|
|
{
|
|
uint32_t *ram = (uint32_t *)(TK1_RAM_BASE);
|
|
uint32_t rnd = rnd_word();
|
|
uint32_t rnd_incr = rnd_word();
|
|
|
|
// Set RAM address and data scrambling values
|
|
*ram_rand = rnd_word();
|
|
*ram_scramble = rnd_word();
|
|
|
|
// Fill RAM with random data (FW does not use RAM, has its stack in
|
|
// FW_RAM)
|
|
for (uint32_t w = 0; w < TK1_RAM_SIZE / 4; w++) {
|
|
ram[w] = rnd;
|
|
rnd += rnd_incr;
|
|
}
|
|
|
|
// Set new scrambling values, for all use of RAM by app
|
|
*ram_rand = rnd_word();
|
|
*ram_scramble = rnd_word();
|
|
}
|
|
|
|
int main(void)
|
|
{
|
|
struct context ctx = {0};
|
|
struct frame_header hdr = {0};
|
|
uint8_t cmd[CMDLEN_MAXBYTES] = {0};
|
|
enum state state = FW_STATE_INITIAL;
|
|
|
|
print_hw_version();
|
|
|
|
// Let the app know the function adddress for blake2s()
|
|
*fw_blake2s_addr = (uint32_t)blake2s;
|
|
|
|
ctx.loadaddr = (uint8_t *)TK1_RAM_BASE;
|
|
ctx.use_uss = FALSE;
|
|
|
|
scramble_ram();
|
|
|
|
for (;;) {
|
|
switch (state) {
|
|
case FW_STATE_INITIAL:
|
|
if (readcommand(&hdr, cmd, state) == -1) {
|
|
state = FW_STATE_FAIL;
|
|
break;
|
|
}
|
|
|
|
state = initial_commands(&hdr, cmd, state, &ctx);
|
|
break;
|
|
|
|
case FW_STATE_LOADING:
|
|
if (readcommand(&hdr, cmd, state) == -1) {
|
|
state = FW_STATE_FAIL;
|
|
break;
|
|
}
|
|
|
|
state = loading_commands(&hdr, cmd, state, &ctx);
|
|
break;
|
|
|
|
case FW_STATE_RUN:
|
|
run(&ctx);
|
|
break; // This is never reached!
|
|
|
|
case FW_STATE_FAIL:
|
|
// fallthrough
|
|
default:
|
|
htif_puts("firmware state 0x");
|
|
htif_puthex(state);
|
|
htif_lf();
|
|
assert(1 == 2);
|
|
break; // Not reached
|
|
}
|
|
}
|
|
|
|
return (int)0xcafebabe;
|
|
}
|