mirror of
https://github.com/tillitis/tillitis-key1.git
synced 2024-10-01 01:45:38 -04:00
258 lines
6.9 KiB
C
258 lines
6.9 KiB
C
/*
|
|
* Copyright (C) 2022 - Tillitis AB
|
|
* SPDX-License-Identifier: GPL-2.0-only
|
|
*/
|
|
|
|
#include "../mta1_mkdf/lib.h"
|
|
#include "../mta1_mkdf/proto.h"
|
|
#include "../mta1_mkdf/types.h"
|
|
#include "../mta1_mkdf_mem.h"
|
|
|
|
// clang-format off
|
|
volatile uint32_t *mta1name0 = (volatile uint32_t *)MTA1_MKDF_MMIO_MTA1_NAME0;
|
|
volatile uint32_t *mta1name1 = (volatile uint32_t *)MTA1_MKDF_MMIO_MTA1_NAME1;
|
|
volatile uint32_t *uds = (volatile uint32_t *)MTA1_MKDF_MMIO_UDS_FIRST;
|
|
volatile uint32_t *uda = (volatile uint32_t *)MTA1_MKDF_MMIO_QEMU_UDA; // Only in QEMU right now
|
|
volatile uint32_t *cdi = (volatile uint32_t *)MTA1_MKDF_MMIO_MTA1_CDI_FIRST;
|
|
volatile uint32_t *udi = (volatile uint32_t *)MTA1_MKDF_MMIO_MTA1_UDI_FIRST;
|
|
volatile uint32_t *switch_app = (volatile uint32_t *)MTA1_MKDF_MMIO_MTA1_SWITCH_APP;
|
|
volatile uint8_t *fw_ram = (volatile uint8_t *)MTA1_MKDF_MMIO_FW_RAM_BASE;
|
|
volatile uint32_t *timer = (volatile uint32_t *)MTA1_MKDF_MMIO_TIMER_TIMER;
|
|
volatile uint32_t *timer_prescaler = (volatile uint32_t *)MTA1_MKDF_MMIO_TIMER_PRESCALER;
|
|
volatile uint32_t *timer_status = (volatile uint32_t *)MTA1_MKDF_MMIO_TIMER_STATUS;
|
|
volatile uint32_t *timer_ctrl = (volatile uint32_t *)MTA1_MKDF_MMIO_TIMER_CTRL;
|
|
volatile uint32_t *trng_status = (volatile uint32_t *)MTA1_MKDF_MMIO_TRNG_STATUS;
|
|
volatile uint32_t *trng_entropy = (volatile uint32_t *)MTA1_MKDF_MMIO_TRNG_ENTROPY;
|
|
// clang-format on
|
|
|
|
// TODO Real UDA is 4 words (16 bytes)
|
|
#define UDA_WORDS 1
|
|
|
|
void test_puts(char *reason)
|
|
{
|
|
for (char *c = reason; *c != '\0'; c++) {
|
|
writebyte(*c);
|
|
}
|
|
}
|
|
|
|
void test_putsn(char *p, int n)
|
|
{
|
|
for (int i = 0; i < n; i++) {
|
|
writebyte(p[i]);
|
|
}
|
|
}
|
|
|
|
void test_puthex(uint8_t c)
|
|
{
|
|
unsigned int upper = (c >> 4) & 0xf;
|
|
unsigned int lower = c & 0xf;
|
|
writebyte(upper < 10 ? '0' + upper : 'a' - 10 + upper);
|
|
writebyte(lower < 10 ? '0' + lower : 'a' - 10 + lower);
|
|
}
|
|
|
|
void test_puthexn(uint8_t *p, int n)
|
|
{
|
|
for (int i = 0; i < n; i++) {
|
|
test_puthex(p[i]);
|
|
}
|
|
}
|
|
|
|
void test_reverseword(uint32_t *wordp)
|
|
{
|
|
*wordp = ((*wordp & 0xff000000) >> 24) | ((*wordp & 0x00ff0000) >> 8) |
|
|
((*wordp & 0x0000ff00) << 8) | ((*wordp & 0x000000ff) << 24);
|
|
}
|
|
|
|
uint32_t wait_timer_tick(uint32_t last_timer)
|
|
{
|
|
uint32_t newtimer;
|
|
for (;;) {
|
|
newtimer = *timer;
|
|
if (newtimer != last_timer) {
|
|
return newtimer;
|
|
}
|
|
}
|
|
}
|
|
|
|
int main()
|
|
{
|
|
uint8_t in;
|
|
|
|
// Wait for terminal program and a character to be typed
|
|
in = readbyte();
|
|
|
|
test_puts("I'm testfw on:");
|
|
// Output the MTA1 core's NAME0 and NAME1
|
|
uint32_t name;
|
|
wordcpy(&name, (void *)mta1name0, 1);
|
|
test_reverseword(&name);
|
|
test_putsn((char *)&name, 4);
|
|
test_puts(" ");
|
|
wordcpy(&name, (void *)mta1name1, 1);
|
|
test_reverseword(&name);
|
|
test_putsn((char *)&name, 4);
|
|
test_puts("\r\n");
|
|
|
|
int anyfailed = 0;
|
|
|
|
uint32_t uds_local[8];
|
|
uint32_t uds_zeros[8];
|
|
memset(uds_zeros, 0, 8 * 4);
|
|
// Should get non-empty UDS
|
|
wordcpy(uds_local, (void *)uds, 8);
|
|
if (memeq(uds_local, uds_zeros, 8 * 4)) {
|
|
test_puts("FAIL: UDS empty\r\n");
|
|
anyfailed = 1;
|
|
}
|
|
// Should NOT be able to read from UDS again
|
|
wordcpy(uds_local, (void *)uds, 8);
|
|
if (!memeq(uds_local, uds_zeros, 8 * 4)) {
|
|
test_puts("FAIL: Read UDS a second time\r\n");
|
|
anyfailed = 1;
|
|
}
|
|
|
|
// TODO test UDA once we have it in real hw
|
|
// uint32_t uda_local[UDA_WORDS];
|
|
// uint32_t uda_zeros[UDA_WORDS];
|
|
// memset(uda_zeros, 0, UDA_WORDS*4);
|
|
// // Should get non-empty UDA
|
|
// wordcpy(uda_local, (void *)uda, UDA_WORDS);
|
|
// if (memeq(uda_local, uda_zeros, UDA_WORDS*4)) {
|
|
// test_puts("FAIL: UDA empty\r\n");
|
|
// anyfailed = 1;
|
|
// }
|
|
|
|
uint32_t udi_local[2];
|
|
uint32_t udi_zeros[2];
|
|
memset(udi_zeros, 0, 2 * 4);
|
|
// Should get non-empty UDI
|
|
wordcpy(udi_local, (void *)udi, 2);
|
|
if (memeq(udi_local, udi_zeros, 2 * 4)) {
|
|
test_puts("FAIL: UDI empty\r\n");
|
|
anyfailed = 1;
|
|
}
|
|
|
|
// Should be able to write to CDI in fw (non-app) mode.
|
|
uint32_t cdi_writetest[8] = {0xdeafbeef, 0xdeafbeef, 0xdeafbeef,
|
|
0xdeafbeef, 0xdeafbeef, 0xdeafbeef,
|
|
0xdeafbeef, 0xdeafbeef};
|
|
uint32_t cdi_readback[8];
|
|
wordcpy((void *)cdi, cdi_writetest, 8);
|
|
wordcpy(cdi_readback, (void *)cdi, 8);
|
|
if (!memeq(cdi_writetest, cdi_readback, 8 * 4)) {
|
|
test_puts("FAIL: Can't write CDI in fw mode\r\n");
|
|
anyfailed = 1;
|
|
}
|
|
|
|
// Test FW-RAM.
|
|
*fw_ram = 0x12;
|
|
if (*fw_ram != 0x12) {
|
|
test_puts("FAIL: Can't write and read FW RAM in fw mode\r\n");
|
|
anyfailed = 1;
|
|
}
|
|
|
|
// Turn on application mode.
|
|
// -------------------------
|
|
*switch_app = 1;
|
|
|
|
// Should NOT be able to read from UDS in app-mode.
|
|
wordcpy(uds_local, (void *)uds, 8);
|
|
if (!memeq(uds_local, uds_zeros, 8 * 4)) {
|
|
test_puts("FAIL: Read from UDS in app-mode\r\n");
|
|
anyfailed = 1;
|
|
}
|
|
|
|
// TODO test UDA once we have in in real hw
|
|
// // Now we should NOT be able to read from UDA.
|
|
// wordcpy(uda_local, (void *)uda, UDA_WORDS);
|
|
// if (!memeq(uda_local, uda_zeros, UDA_WORDS*4)) {
|
|
// test_puts("FAIL: Read from UDA in app-mode\r\n");
|
|
// anyfailed = 1;
|
|
// }
|
|
|
|
uint32_t cdi_local[8];
|
|
uint32_t cdi_local2[8];
|
|
uint32_t cdi_zeros[8];
|
|
memset(cdi_zeros, 0, 8 * 4);
|
|
wordcpy(cdi_local, (void *)cdi, 8);
|
|
// Write to CDI should NOT have any effect in app mode.
|
|
wordcpy((void *)cdi, cdi_zeros, 8);
|
|
wordcpy(cdi_local2, (void *)cdi, 8);
|
|
if (!memeq(cdi_local, cdi_local2, 8 * 4)) {
|
|
test_puts("FAIL: Write to CDI in app-mode\r\n");
|
|
anyfailed = 1;
|
|
}
|
|
|
|
// Test FW-RAM.
|
|
*fw_ram = 0x21;
|
|
if (*fw_ram == 0x21) {
|
|
test_puts("FAIL: Write and read FW RAM in app-mode\r\n");
|
|
anyfailed = 1;
|
|
}
|
|
|
|
test_puts("Testing timer...\r\n");
|
|
// Matching clock at 18 MHz, giving us timer in seconds
|
|
*timer_prescaler = 18 * 1000000;
|
|
|
|
// Test timer expiration after 1s
|
|
*timer = 1;
|
|
// Write anything to start timer
|
|
*timer_ctrl = 1;
|
|
for (;;) {
|
|
if (*timer_status &
|
|
(1 << MTA1_MKDF_MMIO_TIMER_STATUS_READY_BIT)) {
|
|
// Timer expired (it is ready to start again)
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Test to interrupt a timer - and reads from timer register
|
|
// Starting 10s timer and interrupting it in 3s...
|
|
*timer = 10;
|
|
*timer_ctrl = 1;
|
|
uint32_t last_timer = 10;
|
|
for (int i = 0; i < 3; i++) {
|
|
last_timer = wait_timer_tick(last_timer);
|
|
}
|
|
// Write anything to stop the timer
|
|
*timer_ctrl = 1;
|
|
|
|
if (!(*timer_status & (1 << MTA1_MKDF_MMIO_TIMER_STATUS_READY_BIT))) {
|
|
test_puts("FAIL: Timer didn't stop\r\n");
|
|
anyfailed = 1;
|
|
}
|
|
|
|
if (*timer != 10) {
|
|
test_puts("FAIL: Timer didn't reset to 10\r\n");
|
|
anyfailed = 1;
|
|
}
|
|
|
|
// Check and display test results.
|
|
if (anyfailed) {
|
|
test_puts("Some test FAILED!\r\n");
|
|
} else {
|
|
test_puts("All tests passed.\r\n");
|
|
}
|
|
|
|
test_puts("\r\nHere are 256 bytes from the TRNG:\r\n");
|
|
for (int j = 0; j < 8; j++) {
|
|
for (int i = 0; i < 8; i++) {
|
|
while ((*trng_status &
|
|
(1 << MTA1_MKDF_MMIO_TRNG_STATUS_READY_BIT)) ==
|
|
0) {
|
|
}
|
|
uint32_t rnd = *trng_entropy;
|
|
test_puthexn((uint8_t *)&rnd, 4);
|
|
test_puts(" ");
|
|
}
|
|
test_puts("\r\n");
|
|
}
|
|
test_puts("\r\n");
|
|
|
|
test_puts("Now echoing what you type...\r\n");
|
|
for (;;) {
|
|
in = readbyte(); // blocks
|
|
writebyte(in);
|
|
}
|
|
}
|