tillitis-key/hw/production_test/icenvcm.py
2023-03-21 14:38:27 +01:00

669 lines
18 KiB
Python

#!/usr/bin/env python3
#
# Copyright (C) 2021
#
# * Trammell Hudson <hudson@trmm.net>
# * Matthew Mets https://github.com/cibomahto
# * Peter Lawrence https://github.com/majbthrd
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
import usb_test
from binascii import unhexlify, hexlify
import sys
from time import sleep
import re
import os
debug = False
# todo: add expected bitstream sizes
nvcm_id_table = {
0x06: "ICE40LP8K / ICE40HX8K",
0x07: "ICE40LP4K / ICE40HX4K",
0x08: "ICE40LP1K / ICE40HX1K",
0x09: "ICE40LP384",
0x0E: "ICE40LP1K_SWG16",
0x0F: "ICE40LP640_SWG16",
0x10: "ICE5LP1K",
0x11: "ICE5LP2K",
0x12: "ICE5LP4K",
0x14: "ICE40UL1K",
0x15: "ICE40UL640",
0x20: "ICE40UP5K",
0x21: "ICE40UP3K",
}
def die(s):
print(s, file=sys.stderr)
exit(1)
def enable(cs,reset=1):
#gpio.write(cs << cs_pin | reset << reset_pin)
flasher.gpio_put(tp1_pins['ss'], cs)
flasher.gpio_put(tp1_pins['crst'], reset)
def sendhex(s):
if debug and not s == "0500":
print("TX", s)
x = bytes.fromhex(s)
#b = dev.exchange(x, duplex=True, readlen=len(x))
b = flasher.spi_bitbang(sck_pin=tp1_pins['sck'], mosi_pin=tp1_pins['mosi'], miso_pin=tp1_pins['miso'], buf=x)
if debug and not s == "0500":
print("RX", b.hex())
return int.from_bytes(b, byteorder='big')
def delay(count: int):
# run the clock with no CS asserted
#dev.exchange(b'\x00', duplex=True, readlen=count)
sendhex('00' * count)
def tck(count: int, dly: int = 0):
delay(count >> 3)
delay(count >> 3)
delay(count >> 3)
delay(count >> 3)
delay(count >> 3)
delay(count >> 3)
def init():
if debug:
print("init")
enable(1, 1)
enable(1, 0) # reset high
sleep(0.15)
enable(0, 0) # enable and reset high
sleep(0.12)
enable(0, 1) # enable low, reset high
sleep(0.12)
enable(1, 1) # enable and reset low
sleep(0.12)
return True
def status_wait(count=1000):
for i in range(0,count):
tck(5000)
enable(0)
x = sendhex("0500")
enable(1)
#print("x=%04x" %(x))
if (x & 0x00c1) == 0:
return True
print("status failed to clear", file=sys.stdout)
return False
def nvcm_command(cmd):
enable(0)
sendhex(cmd)
enable(1)
if not status_wait():
return False
tck(8)
return True
def nvcm_pgm_enable():
return nvcm_command("06")
def nvcm_pgm_disable():
return nvcm_command("04")
def nvcm_enable_access():
# ! Shift in Access-NVCM instruction;
# SMCInstruction[1] = 0x70807E99557E;
return nvcm_command("7eaa997e010e")
# Returns a big integer
def nvcm_read(address, length=8, cmd=0x03):
enable(0)
sendhex("%02x%06x" % (cmd, address))
sendhex("00" * 9) # dummy bytes
x = 0
for i in range(0,length):
x = x << 8 | sendhex("00")
enable(1)
return x
# Returns a byte array of the contents
def nvcm_read_bytes(address, length=8):
return nvcm_read(address, length).to_bytes(length, byteorder="big")
def nvcm_write(address, data, cmd=0x02):
enable(0)
sendhex("%02x%06x" % (cmd, address))
sendhex(data)
enable(1)
if not status_wait():
print("WRITE FAILED: cmd=%02x address=%06x data=%s" % (cmd, address, data.hex()), file=sys.stderr)
return False
tck(8)
return True
def nvcm_bank_select(bank):
return nvcm_write(cmd=0x83, address=0x000025, data="%02x" % (bank))
def nvcm_select_nvcm():
# ! Shift in Restore Access-NVCM instruction;
# SDR 40 TDI(0x00A40000C1);
return nvcm_bank_select(0x00)
def nvcm_select_trim():
# ! Shift in Trim setup-NVCM instruction;
# SDR 40 TDI(0x08A40000C1);
return nvcm_bank_select(0x10)
def nvcm_select_sig():
# ! Shift in Access Silicon Signature instruction;
# IDInstruction[1] = 0x04A40000C1;
# SDR 40 TDI(IDInstruction[1]);
return nvcm_bank_select(0x20)
def nvcm_read_trim():
# ! Shift in Access-NVCM instruction;
# SMCInstruction[1] = 0x70807E99557E;
if not nvcm_enable_access():
return
# ! Shift in READ_RF(0x84) instruction;
# SDR 104 TDI(0x00000000000000000004000021);
x = nvcm_read(cmd=0x84, address=0x000020, length=8)
tck(8)
#print("FSM Trim Register %x" % (x))
nvcm_select_nvcm()
return x
def nvcm_write_trim(data):
# ! Setup Programming Parameter in Trim Registers;
# ! Shift in Trim setup-NVCM instruction;
# TRIMInstruction[1] = 0x000000430F4FA80004000041;
return nvcm_write(cmd=0x82, address=0x000020, data=data)
def nvcm_enable():
if debug:
print("nvcm_enable")
# ! Shift in Access-NVCM instruction;
# SMCInstruction[1] = 0x70807E99557E;
if not nvcm_enable_access():
return
# ! Setup Reading Parameter in Trim Registers;
# ! Shift in Trim setup-NVCM instruction;
# TRIMInstruction[1] = 0x000000230000000004000041;
if debug:
print("setup_nvcm")
return nvcm_write_trim("00000000c4000000")
def nvcm_enable_trim():
# ! Setup Programming Parameter in Trim Registers;
# ! Shift in Trim setup-NVCM instruction;
# TRIMInstruction[1] = 0x000000430F4FA80004000041;
return nvcm_write_trim("0015f2f0c2000000")
def nvcm_disable():
if not nvcm_select_nvcm():
return
reset(1)
tck(8, 1)
rest(0)
tck(8, 2000)
def nvcm_trim_blank_check():
print ("NVCM Trim_Parameter_OTP blank check");
if not nvcm_select_trim():
return
x = nvcm_read(0x000020, 1)
nvcm_select_nvcm()
if x != 0:
die ("NVCM Trim_Parameter_OTP Block is not blank. (%02x)" % x);
return True
def nvcm_blank_check(total_fuse):
nvcm_select_nvcm()
status = True
print ("NVCM main memory blank check");
contents = nvcm_read_bytes(0x000000, total_fuse)
for i in range(0,total_fuse):
x = contents[i]
if debug:
print("%08x: %02x" % (i, x))
if x != 0:
print ("%08x: NVCM Main Memory Block is not blank." % (i), file=sys.stderr)
status = False
#break
nvcm_select_nvcm()
return status
def nvcm_program(rows):
nvcm_select_nvcm()
if not nvcm_enable_trim():
return False
print ("NVCM Program main memory")
if not nvcm_pgm_enable():
return False
status = True
i = 0
for row in rows:
if i % 1024 == 0:
print("%6d / %6d bytes" % (i, len(rows) * 8))
i += 8
if not nvcm_command(row):
status = False
break
nvcm_pgm_disable()
if not status:
print("PROGRAMMING FAILED", file=sys.stderr)
return status
def nvcm_write_trim_pages(lock_bits):
if not nvcm_select_nvcm():
die("select trim failed")
if not nvcm_enable_trim():
die("write trim command failed")
if not nvcm_select_trim():
die("select trim failed")
if not nvcm_pgm_enable():
die("write enable failed")
# ! Program Security Bit row 1;
# ! Shift in PAGEPGM instruction;
# SDR 96 TDI(0x000000008000000C04000040);
# ! Program Security Bit row 2;
# SDR 96 TDI(0x000000008000000C06000040);
# ! Program Security Bit row 3;
# SDR 96 TDI(0x000000008000000C05000040);
# ! Program Security Bit row 4;
# SDR 96 TDI(0x00000000800000C07000040);
if not nvcm_write(0x000020, lock_bits):
die("trim write 0x20 failed")
if not nvcm_write(0x000060, lock_bits):
die("trim write 0x60 failed")
if not nvcm_write(0x0000a0, lock_bits):
die("trim write 0xa0 failed")
if not nvcm_write(0x0000e0, lock_bits):
die("trim write 0xe0 failed")
nvcm_pgm_disable()
# verify a read back
x = nvcm_read(0x000020, 8)
nvcm_select_nvcm()
lock_bits = int(lock_bits,16)
if x & lock_bits != lock_bits:
die("Failed to write trim lock bits: %016x != expected %016x" % (x,lock_bits))
print("New state %016x" % (x))
return True
def nvcm_trim_secure():
print ("NVCM Secure")
trim = nvcm_read_trim()
if (trim >> 60) & 0x3 != 0:
print("NVCM already secure? trim=%016x" % (trim), file=sys.stderr)
return nvcm_write_trim_pages("3000000100000000")
def nvcm_trim_program():
print ("NVCM Program Trim_Parameter_OTP");
return nvcm_write_trim_pages("0015f2f1c4000000")
def nvcm_info():
nvcm_select_sig()
sig1 = nvcm_read(0x000000, 8)
nvcm_select_sig()
sig2 = nvcm_read(0x000008, 8)
# have to switch back to nvcm bank before switching to trim?
nvcm_select_nvcm()
trim = nvcm_read_trim()
nvcm_select_nvcm()
nvcm_select_trim()
trim0 = nvcm_read(0x000020, 8)
nvcm_select_trim()
trim1 = nvcm_read(0x000060, 8)
nvcm_select_trim()
trim2 = nvcm_read(0x0000a0, 8)
nvcm_select_trim()
trim3 = nvcm_read(0x0000e0, 8)
nvcm_select_nvcm()
secured = ((trim >> 60) & 0x3)
device_id = (sig1 >> 56) & 0xFF
print("Device: %s (%02x) secure=%d" % (
nvcm_id_table.get(device_id, "Unknown"),
device_id,
secured
))
print("Sig 0: %016x" % (sig1))
print("Sig 1: %016x" % (sig2))
print("TrimRF: %016x" % (trim))
print("Trim 0: %016x" % (trim0))
print("Trim 1: %016x" % (trim1))
print("Trim 2: %016x" % (trim2))
print("Trim 3: %016x" % (trim3))
return True
def nvcm_read_file(filename):
nvcm_select_nvcm()
total_fuse = 104090
contents = b''
for offset in range(0,total_fuse,8):
if offset % 1024 == 0:
print("%6d / %6d bytes" % (offset, total_fuse))
contents += nvcm_read_bytes(offset, 8)
if filename == '-':
with os.fdopen(sys.stdout.fileno(), "wb", closefd=False) as f:
f.write(contents)
f.flush()
else:
with open(filename, "wb") as f:
f.write(contents)
f.flush()
#
# bistream to NVCM command conversion is based on majbthrd's work in
# https://github.com/YosysHQ/icestorm/pull/272
#
def bitstream2nvcm(bitstream):
# ensure that the file starts with the correct bistream preamble
for origin in range(0,len(bitstream)):
if bitstream[origin:origin+4] == bytes.fromhex('7EAA997E'):
break
if origin == len(bitstream):
print("Preamble not found", file=sys.stderr)
return False
print("Found preamable at %08x" % (origin), file=sys.stderr)
# there might be stuff in the header with vendor tools,
# but not usually in icepack produced output, so ignore it for now
# todo: what is the correct size?
rows = []
for pos in range(origin, len(bitstream), 8):
row = bitstream[pos:pos+8]
# pad out to 8-bytes
row += b'\0' * (8 - len(row))
if row == bytes(8):
# skip any all-zero entries in the bistream
continue
# NVCM addressing is very weird
addr = pos - origin
nvcm_addr = int(addr / 328) * 4096 + (addr % 328)
rows += [ "02 %06x %s" % (nvcm_addr, row.hex()) ]
return rows
def sleep_flash():
# Disable board power
flasher.gpio_put(tp1_pins['5v_en'], False)
flasher.gpio_set_direction(tp1_pins['5v_en'], True)
# Pull CRST low to prevent FPGA from starting
flasher.gpio_set_direction(tp1_pins['crst'], True)
flasher.gpio_put(tp1_pins['crst'], False)
# Enable board power
flasher.gpio_put(tp1_pins['5v_en'], True)
# Configure pins for talking to flash
flasher.gpio_set_direction(tp1_pins['ss'], True)
flasher.gpio_set_direction(tp1_pins['mosi'], False)
flasher.gpio_set_direction(tp1_pins['sck'], True)
flasher.gpio_set_direction(tp1_pins['miso'], True)
flasher.gpio_put(tp1_pins['ss'], False)
flasher.spi_bitbang(sck_pin=tp1_pins['sck'], mosi_pin=tp1_pins['miso'], miso_pin=tp1_pins['mosi'], buf=[0xAB])
flasher.gpio_put(tp1_pins['ss'], True)
# Confirm we can talk to flash
flasher.gpio_put(tp1_pins['ss'], False)
data = flasher.spi_bitbang(sck_pin=tp1_pins['sck'], mosi_pin=tp1_pins['miso'], miso_pin=tp1_pins['mosi'], buf=[0x9f, 0,0])
flasher.gpio_put(tp1_pins['ss'], True)
print('flash ID while awake:', ' '.join(['{:02x}'.format(b) for b in data]))
assert(data == bytes([0xff, 0xef, 0x40]))
# Test that the flash will ignore a sleep command that doesn't start on the first byte
flasher.gpio_put(tp1_pins['ss'], False)
flasher.spi_bitbang(sck_pin=tp1_pins['sck'], mosi_pin=tp1_pins['miso'], miso_pin=tp1_pins['mosi'], buf=[0, 0xb9])
flasher.gpio_put(tp1_pins['ss'], True)
# Confirm we can talk to flash
flasher.gpio_put(tp1_pins['ss'], False)
data = flasher.spi_bitbang(sck_pin=tp1_pins['sck'], mosi_pin=tp1_pins['miso'], miso_pin=tp1_pins['mosi'], buf=[0x9f, 0,0])
flasher.gpio_put(tp1_pins['ss'], True)
print('flash ID while awake:', ' '.join(['{:02x}'.format(b) for b in data]))
assert(data == bytes([0xff, 0xef, 0x40]))
# put the flash to sleep
flasher.gpio_put(tp1_pins['ss'], False)
flasher.spi_bitbang(sck_pin=tp1_pins['sck'], mosi_pin=tp1_pins['miso'], miso_pin=tp1_pins['mosi'], buf=[0xb9])
flasher.gpio_put(tp1_pins['ss'], True)
# Confirm flash is asleep
flasher.gpio_put(tp1_pins['ss'], False)
data = flasher.spi_bitbang(sck_pin=tp1_pins['sck'], mosi_pin=tp1_pins['miso'], miso_pin=tp1_pins['mosi'], buf=[0x9f, 0,0])
flasher.gpio_put(tp1_pins['ss'], True)
print('flash ID while asleep:', ' '.join(['{:02x}'.format(b) for b in data]))
assert(data == bytes([0xff, 0xff, 0xff]))
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument( '--port',
type=str,
default='ftdi://::/1',
help='FTDI port of the form ftdi://::/1')
parser.add_argument( '-v', '--verbose',
dest='verbose',
action='store_true',
help='Show debug information and serial read/writes')
parser.add_argument('-f', '--sleep_flash',
dest='sleep_flash',
action='store_true',
help='Put an attached SPI flash chip in deep sleep before programming FPGA')
parser.add_argument('-b', '--boot',
dest='do_boot',
action='store_true',
help='Deassert the reset line to allow the FPGA to boot')
parser.add_argument('-i', '--info',
dest='read_info',
action='store_true',
help='Read chip ID, trim and other info')
parser.add_argument('--read',
dest='read_file',
type=str,
default=None,
help='Read contents of NVCM')
parser.add_argument('--write',
dest='write_file',
type=str,
default=None,
help='bitstream file to write to NVCM (warning: not reversable!)')
parser.add_argument('--ignore-blank',
dest='ignore_blank',
action='store_true',
help='Proceed even if the chip is not blank')
parser.add_argument('--secure',
dest='set_secure',
action='store_true',
help='Set security bits to prevent modification (warning: not reversable!')
parser.add_argument('--my-design-is-good-enough',
dest='good_enough',
action='store_true',
help='Enable the dangerous commands --write and --secure')
args = parser.parse_args()
debug = args.verbose
if not args.good_enough \
and (args.write_file or args.set_secure):
print("Are you sure your design is good enough?", file=sys.stderr)
exit(1)
# Instantiate a SPI controller, with separately managed CS line
#spi = SpiController()
flasher = usb_test.ice40_flasher()
# Configure the first interface (IF/1) of the FTDI device as a SPI controller
#spi.configure(args.port)
# Get a port to a SPI device w/ /CS on A*BUS3 and SPI mode 0 @ 12MHz
# the CS line is not used in this case
#dev = spi.get_port(cs=0, freq=12E6, mode=0)
#reset_pin = 7
#cs_pin = 4
# Get GPIO port to manage the CS and RESET pins
#gpio = spi.get_gpio()
#gpio.set_direction(1 << reset_pin | 1 << cs_pin, 1 << reset_pin | 1 << cs_pin)
# Enable power to the FPGA, then set both reset and CS pins high
tp1_pins = {
'5v_en' : 7,
'sck' : 10,
'mosi' : 11,
'ss' : 12,
'miso' : 13,
'crst' : 14,
'cdne' : 15
}
# # Reset pin values
# for pin in tp1_pins:
# flasher.gpio_set_direction(tp1_pins[pin], False)
if args.sleep_flash:
sleep_flash()
# Configure pins for talking to ice40
flasher.gpio_set_direction(tp1_pins['ss'], True)
flasher.gpio_set_direction(tp1_pins['mosi'], True)
flasher.gpio_set_direction(tp1_pins['sck'], True)
flasher.gpio_set_direction(tp1_pins['miso'], False)
# # Turn on ICE40 in CRAM boot mode
enable(1, 0) # enable and reset high
sleep(0.2)
enable(1, 1) # enable low, reset high
init() or exit(1)
nvcm_enable() or exit(1)
if args.read_info:
nvcm_info() or exit(1)
if args.write_file:
with open(args.write_file, "rb") as f:
bitstream = f.read()
print("read %d bytes" % (len(bitstream)))
cmds = bitstream2nvcm(bitstream)
if not cmds:
exit(1)
if not args.ignore_blank:
nvcm_trim_blank_check() or exit(1)
# how much should we check?
nvcm_blank_check(0x100) or exit(1)
# this is it!
nvcm_program(cmds) or exit(1)
# update the trim to boot from nvcm
nvcm_trim_program() or exit(1)
if args.read_file:
# read back after writing to the NVCM
nvcm_read_file(args.read_file) or exit(1)
if args.set_secure:
nvcm_trim_secure() or exit(1)
if args.do_boot:
# hold reset low for half a second
enable(1,0)
sleep(0.5)
enable(1,1)