/* * Copyright (C) 2022, 2023 - Tillitis AB * SPDX-License-Identifier: GPL-2.0-only */ #include "../tk1_mem.h" #include "assert.h" #include "auth_app.h" #include "blake2s/blake2s.h" #include "htif.h" #include "lib.h" #include "partition_table.h" #include "preload_app.h" #include "proto.h" #include "rng.h" #include "state.h" #include #include #include // clang-format off static volatile uint32_t *uds = (volatile uint32_t *)TK1_MMIO_UDS_FIRST; static volatile uint32_t *switch_app = (volatile uint32_t *)TK1_MMIO_TK1_SWITCH_APP; static volatile uint32_t *name0 = (volatile uint32_t *)TK1_MMIO_TK1_NAME0; static volatile uint32_t *name1 = (volatile uint32_t *)TK1_MMIO_TK1_NAME1; static volatile uint32_t *ver = (volatile uint32_t *)TK1_MMIO_TK1_VERSION; static volatile uint32_t *udi = (volatile uint32_t *)TK1_MMIO_TK1_UDI_FIRST; static volatile uint32_t *cdi = (volatile uint32_t *)TK1_MMIO_TK1_CDI_FIRST; static volatile uint32_t *app_addr = (volatile uint32_t *)TK1_MMIO_TK1_APP_ADDR; static volatile uint32_t *app_size = (volatile uint32_t *)TK1_MMIO_TK1_APP_SIZE; static volatile uint32_t *fw_blake2s_addr = (volatile uint32_t *)TK1_MMIO_TK1_BLAKE2S; static volatile uint32_t *timer = (volatile uint32_t *)TK1_MMIO_TIMER_TIMER; static volatile uint32_t *timer_prescaler = (volatile uint32_t *)TK1_MMIO_TIMER_PRESCALER; static volatile uint32_t *timer_status = (volatile uint32_t *)TK1_MMIO_TIMER_STATUS; static volatile uint32_t *timer_ctrl = (volatile uint32_t *)TK1_MMIO_TIMER_CTRL; static volatile uint32_t *ram_addr_rand = (volatile uint32_t *)TK1_MMIO_TK1_RAM_ADDR_RAND; static volatile uint32_t *ram_data_rand = (volatile uint32_t *)TK1_MMIO_TK1_RAM_DATA_RAND; // clang-format on // Context for the loading of a TKey program struct context { uint32_t left; // Bytes left to receive uint8_t digest[32]; // Program digest uint8_t *loadaddr; // Where we are currently loading a TKey program bool use_uss; // Use USS? uint8_t uss[32]; // User Supplied Secret, if any bool from_flash; }; static void print_hw_version(void); static void print_digest(uint8_t *md); static int compute_app_digest(uint8_t *digest); static void compute_cdi(const uint8_t *digest, const bool use_uss, const uint8_t *uss); static void copy_name(uint8_t *buf, const size_t bufsiz, const uint32_t word); static enum state initial_commands(const struct frame_header *hdr, const uint8_t *cmd, enum state state, struct context *ctx); static enum state loading_commands(const struct frame_header *hdr, const uint8_t *cmd, enum state state, struct context *ctx); static void run(const struct context *ctx, partition_table_t *part_table); static void scramble_ram(void); static void print_hw_version(void) { htif_puts("Hello, I'm firmware with"); htif_puts(" tk1_name0:"); htif_putinthex(*name0); htif_puts(" tk1_name1:"); htif_putinthex(*name1); htif_puts(" tk1_version:"); htif_putinthex(*ver); htif_lf(); } static void print_digest(uint8_t *md) { htif_puts("The app digest:\n"); for (int j = 0; j < 4; j++) { for (int i = 0; i < 8; i++) { htif_puthex(md[i + 8 * j]); } htif_lf(); } htif_lf(); } /* Computes the blake2s digest of the app loaded into RAM */ static int compute_app_digest(uint8_t *digest) { blake2s_ctx b2s_ctx = {0}; return blake2s(digest, 32, NULL, 0, (const void *)TK1_RAM_BASE, *app_size, &b2s_ctx); } // CDI = blake2s(uds, blake2s(app), uss) static void compute_cdi(const uint8_t *digest, const bool use_uss, const uint8_t *uss) { uint32_t local_uds[8] = {0}; uint32_t local_cdi[8] = {0}; blake2s_ctx secure_ctx = {0}; uint32_t rnd_sleep = 0; int blake2err = 0; // Prepare to sleep a random number of cycles before reading out UDS *timer_prescaler = 1; rnd_sleep = rng_get_word(); // Up to 65536 cycles rnd_sleep &= 0xffff; *timer = (uint32_t)(rnd_sleep == 0 ? 1 : rnd_sleep); *timer_ctrl = (1 << TK1_MMIO_TIMER_CTRL_START_BIT); while (*timer_status & (1 << TK1_MMIO_TIMER_STATUS_RUNNING_BIT)) { } blake2err = blake2s_init(&secure_ctx, 32, NULL, 0); assert(blake2err == 0); // Update hash with UDS. This means UDS will live for a short // while on the firmware stack which is in the special fw_ram. wordcpy_s(local_uds, 8, (void *)uds, 8); blake2s_update(&secure_ctx, (const void *)local_uds, 32); (void)secure_wipe(local_uds, sizeof(local_uds)); // Update with TKey program digest blake2s_update(&secure_ctx, digest, 32); // Possibly hash in the USS as well if (use_uss) { blake2s_update(&secure_ctx, uss, 32); } // Write hashed result to Compound Device Identity (CDI) blake2s_final(&secure_ctx, &local_cdi); // Clear secure_ctx of any residue of UDS. Don't want to keep // that for long even though fw_ram is cleared later. (void)secure_wipe(&secure_ctx, sizeof(secure_ctx)); // CDI only word writable wordcpy_s((void *)cdi, 8, &local_cdi, 8); } static void copy_name(uint8_t *buf, const size_t bufsiz, const uint32_t word) { assert(bufsiz >= 4); buf[0] = word >> 24; buf[1] = word >> 16; buf[2] = word >> 8; buf[3] = word; } static enum state initial_commands(const struct frame_header *hdr, const uint8_t *cmd, enum state state, struct context *ctx) { uint8_t rsp[CMDLEN_MAXBYTES] = {0}; switch (cmd[0]) { case FW_CMD_NAME_VERSION: htif_puts("cmd: name-version\n"); if (hdr->len != 1) { // Bad length state = FW_STATE_FAIL; break; } copy_name(rsp, CMDLEN_MAXBYTES, *name0); copy_name(&rsp[4], CMDLEN_MAXBYTES - 4, *name1); wordcpy_s(&rsp[8], CMDLEN_MAXBYTES / 4 - 2, (void *)ver, 1); fwreply(*hdr, FW_RSP_NAME_VERSION, rsp); // still initial state break; case FW_CMD_GET_UDI: { uint32_t udi_words[2]; htif_puts("cmd: get-udi\n"); if (hdr->len != 1) { // Bad length state = FW_STATE_FAIL; break; } rsp[0] = STATUS_OK; wordcpy_s(&udi_words, 2, (void *)udi, 2); memcpy_s(&rsp[1], CMDLEN_MAXBYTES - 1, &udi_words, 2 * 4); fwreply(*hdr, FW_RSP_GET_UDI, rsp); // still initial state break; } case FW_CMD_LOAD_APP: { uint32_t local_app_size; htif_puts("cmd: load-app(size, uss)\n"); if (hdr->len != 128) { // Bad length state = FW_STATE_FAIL; break; } // cmd[1..4] contains the size. local_app_size = cmd[1] + (cmd[2] << 8) + (cmd[3] << 16) + (cmd[4] << 24); htif_puts("app size: "); htif_putinthex(local_app_size); htif_lf(); if (local_app_size == 0 || local_app_size > TK1_APP_MAX_SIZE) { rsp[0] = STATUS_BAD; fwreply(*hdr, FW_RSP_LOAD_APP, rsp); // still initial state break; } *app_size = local_app_size; // Do we have a USS at all? if (cmd[5] != 0) { // Yes ctx->use_uss = true; memcpy_s(ctx->uss, 32, &cmd[6], 32); } else { ctx->use_uss = false; } rsp[0] = STATUS_OK; fwreply(*hdr, FW_RSP_LOAD_APP, rsp); assert(*app_size != 0); assert(*app_size <= TK1_APP_MAX_SIZE); ctx->left = *app_size; state = FW_STATE_LOADING; break; } case FW_CMD_LOAD_APP_FLASH: rsp[0] = STATUS_OK; fwreply(*hdr, FW_RSP_LOAD_APP_FLASH, rsp); state = FW_STATE_LOAD_APP_FLASH; break; default: htif_puts("Got unknown firmware cmd: 0x"); htif_puthex(cmd[0]); htif_lf(); state = FW_STATE_FAIL; break; } return state; } static enum state loading_commands(const struct frame_header *hdr, const uint8_t *cmd, enum state state, struct context *ctx) { uint8_t rsp[CMDLEN_MAXBYTES] = {0}; uint32_t nbytes = 0; switch (cmd[0]) { case FW_CMD_LOAD_APP_DATA: htif_puts("cmd: load-app-data\n"); if (hdr->len != 128) { // Bad length state = FW_STATE_FAIL; break; } if (ctx->left > (128 - 1)) { nbytes = 128 - 1; } else { nbytes = ctx->left; } memcpy_s(ctx->loadaddr, ctx->left, cmd + 1, nbytes); /*@-mustfreeonly@*/ ctx->loadaddr += nbytes; /*@+mustfreeonly@*/ ctx->left -= nbytes; if (ctx->left == 0) { htif_puts("Fully loaded "); htif_putinthex(*app_size); htif_lf(); // Compute Blake2S digest of the app, // storing it for FW_STATE_RUN int digest_err = compute_app_digest(ctx->digest); assert(digest_err == 0); print_digest(ctx->digest); // And return the digest in final // response rsp[0] = STATUS_OK; memcpy_s(&rsp[1], CMDLEN_MAXBYTES - 1, ctx->digest, 32); fwreply(*hdr, FW_RSP_LOAD_APP_DATA_READY, rsp); state = FW_STATE_RUN; break; } rsp[0] = STATUS_OK; fwreply(*hdr, FW_RSP_LOAD_APP_DATA, rsp); // still loading state break; default: htif_puts("Got unknown firmware cmd: 0x"); htif_puthex(cmd[0]); htif_lf(); state = FW_STATE_FAIL; break; } return state; } static void run(const struct context *ctx, partition_table_t *part_table) { /* At this point we expect an app to be loaded into RAM */ *app_addr = TK1_RAM_BASE; // CDI = hash(uds, hash(app), uss) compute_cdi(ctx->digest, ctx->use_uss, ctx->uss); if (ctx->from_flash) { if (part_table->pre_app_data.status == 0x02) { htif_puts("Create auth\n"); auth_app_create(&part_table->pre_app_data.auth); part_table->pre_app_data.status = 0x01; part_table_write(part_table); } if (!auth_app_authenticate(&part_table->pre_app_data.auth)) { htif_puts("!Authenticated\n"); assert(1 == 2); } } htif_puts("Flipping to app mode!\n"); htif_puts("Jumping to "); htif_putinthex(*app_addr); htif_lf(); // Clear the firmware stack // clang-format off #ifndef S_SPLINT_S asm volatile( "li a0, 0xd0000000;" // FW_RAM "li a1, 0xd0000800;" // End of 2 KB FW_RAM (just past the end) "loop:;" "sw zero, 0(a0);" "addi a0, a0, 4;" "blt a0, a1, loop;" ::: "memory"); #endif // clang-format on // Flip over to application mode *switch_app = 1; // XXX Firmware stack now no longer available // Don't use any function calls! // Jump to app - doesn't return // clang-format off #ifndef S_SPLINT_S asm volatile( // Get value at TK1_MMIO_TK1_APP_ADDR "lui a0,0xff000;" "lw a0,0x030(a0);" // Jump to it "jalr x0,0(a0);" ::: "memory"); #endif // clang-format on __builtin_unreachable(); } static void scramble_ram(void) { uint32_t *ram = (uint32_t *)(TK1_RAM_BASE); // Fill RAM with random data // Get random state and accumulator seeds. uint32_t data_state = rng_get_word(); uint32_t data_acc = rng_get_word(); for (uint32_t w = 0; w < TK1_RAM_SIZE / 4; w++) { data_state = rng_xorwow(data_state, data_acc); ram[w] = data_state; } // Set RAM address and data scrambling parameters *ram_addr_rand = rng_get_word(); *ram_data_rand = rng_get_word(); } int main(void) { struct context ctx = {0}; struct frame_header hdr = {0}; uint8_t cmd[CMDLEN_MAXBYTES] = {0}; enum state state = FW_STATE_INITIAL; partition_table_t part_table; ctx.from_flash = false; print_hw_version(); // Let the app know the function address for blake2s() *fw_blake2s_addr = (uint32_t)blake2s; /*@-mustfreeonly@*/ /* Yes, splint, this points directly to RAM and we don't care * about freeing anything was pointing to 0x0 before. */ ctx.loadaddr = (uint8_t *)TK1_RAM_BASE; /*@+mustfreeonly@*/ ctx.use_uss = false; scramble_ram(); /*readbyte(); // wait for input to start*/ part_table_init(&part_table); /* Force a preloaded app to start, to create the authentication digest */ if (preload_check_valid_app(&part_table) && part_table.pre_app_data.status == 0x02) { state = FW_STATE_LOAD_APP_FLASH; } for (;;) { switch (state) { case FW_STATE_INITIAL: if (readcommand(&hdr, cmd, state) == -1) { state = FW_STATE_FAIL; break; } state = initial_commands(&hdr, cmd, state, &ctx); break; case FW_STATE_LOADING: if (readcommand(&hdr, cmd, state) == -1) { state = FW_STATE_FAIL; break; } state = loading_commands(&hdr, cmd, state, &ctx); break; case FW_STATE_LOAD_APP_FLASH: if (preload_start(&part_table) == -1) { state = FW_STATE_FAIL; break; } *app_size = part_table.pre_app_data.size; assert(*app_size <= TK1_APP_MAX_SIZE); int digest_err = compute_app_digest(ctx.digest); assert(digest_err == 0); print_digest(ctx.digest); ctx.use_uss = false; ctx.from_flash = true; state = FW_STATE_RUN; break; case FW_STATE_RUN: run(&ctx, &part_table); break; // This is never reached! case FW_STATE_FAIL: // fallthrough default: htif_puts("firmware state 0x"); htif_puthex(state); htif_lf(); assert(1 == 2); break; // Not reached } } /*@ -compdestroy @*/ /* We don't care about memory leaks here. */ return (int)0xcafebabe; }