/* * Copyright (C) 2022 - Tillitis AB * SPDX-License-Identifier: GPL-2.0-only */ #include "../tk1/blake2s/blake2s.h" #include "../tk1/lib.h" #include "../tk1/proto.h" #include "../tk1/types.h" #include "../tk1_mem.h" // clang-format off volatile uint32_t *tk1name0 = (volatile uint32_t *)TK1_MMIO_TK1_NAME0; volatile uint32_t *tk1name1 = (volatile uint32_t *)TK1_MMIO_TK1_NAME1; volatile uint32_t *uds = (volatile uint32_t *)TK1_MMIO_UDS_FIRST; volatile uint32_t *uda = (volatile uint32_t *)TK1_MMIO_QEMU_UDA; // Only in QEMU right now volatile uint32_t *cdi = (volatile uint32_t *)TK1_MMIO_TK1_CDI_FIRST; volatile uint32_t *udi = (volatile uint32_t *)TK1_MMIO_TK1_UDI_FIRST; volatile uint32_t *switch_app = (volatile uint32_t *)TK1_MMIO_TK1_SWITCH_APP; volatile uint8_t *fw_ram = (volatile uint8_t *)TK1_MMIO_FW_RAM_BASE; volatile uint32_t *timer = (volatile uint32_t *)TK1_MMIO_TIMER_TIMER; volatile uint32_t *timer_prescaler = (volatile uint32_t *)TK1_MMIO_TIMER_PRESCALER; volatile uint32_t *timer_status = (volatile uint32_t *)TK1_MMIO_TIMER_STATUS; volatile uint32_t *timer_ctrl = (volatile uint32_t *)TK1_MMIO_TIMER_CTRL; volatile uint32_t *trng_status = (volatile uint32_t *)TK1_MMIO_TRNG_STATUS; volatile uint32_t *trng_entropy = (volatile uint32_t *)TK1_MMIO_TRNG_ENTROPY; volatile uint32_t *fw_blake2s_addr = (volatile uint32_t *)TK1_MMIO_TK1_BLAKE2S; // Function pointer to blake2s() volatile int (*fw_blake2s)(void *, unsigned long, const void *, unsigned long, const void *, unsigned long, blake2s_ctx *); // clang-format on // TODO Real UDA is 4 words (16 bytes) #define UDA_WORDS 1 void puts(char *reason) { for (char *c = reason; *c != '\0'; c++) { writebyte(*c); } } void putsn(char *p, int n) { for (int i = 0; i < n; i++) { writebyte(p[i]); } } void puthex(uint8_t c) { unsigned int upper = (c >> 4) & 0xf; unsigned int lower = c & 0xf; writebyte(upper < 10 ? '0' + upper : 'a' - 10 + upper); writebyte(lower < 10 ? '0' + lower : 'a' - 10 + lower); } void puthexn(uint8_t *p, int n) { for (int i = 0; i < n; i++) { puthex(p[i]); } } void hexdump(uint8_t *buf, int len) { uint8_t *row; uint8_t *byte; uint8_t *max; row = buf; max = &buf[len]; for (byte = 0; byte != max; row = byte) { for (byte = row; byte != max && byte != (row + 16); byte++) { puthex(*byte); } puts("\r\n"); } } void reverseword(uint32_t *wordp) { *wordp = ((*wordp & 0xff000000) >> 24) | ((*wordp & 0x00ff0000) >> 8) | ((*wordp & 0x0000ff00) << 8) | ((*wordp & 0x000000ff) << 24); } uint32_t wait_timer_tick(uint32_t last_timer) { uint32_t newtimer; for (;;) { newtimer = *timer; if (newtimer != last_timer) { return newtimer; } } } int main() { uint8_t in; // Wait for terminal program and a character to be typed in = readbyte(); puts("I'm testfw on:"); // Output the TK1 core's NAME0 and NAME1 uint32_t name; wordcpy(&name, (void *)tk1name0, 1); reverseword(&name); putsn((char *)&name, 4); puts(" "); wordcpy(&name, (void *)tk1name1, 1); reverseword(&name); putsn((char *)&name, 4); puts("\r\n"); int anyfailed = 0; uint32_t uds_local[8]; uint32_t uds_zeros[8]; memset(uds_zeros, 0, 8 * 4); // Should get non-empty UDS wordcpy(uds_local, (void *)uds, 8); if (memeq(uds_local, uds_zeros, 8 * 4)) { puts("FAIL: UDS empty\r\n"); anyfailed = 1; } // Should NOT be able to read from UDS again wordcpy(uds_local, (void *)uds, 8); if (!memeq(uds_local, uds_zeros, 8 * 4)) { puts("FAIL: Read UDS a second time\r\n"); anyfailed = 1; } // TODO test UDA once we have it in real hw // uint32_t uda_local[UDA_WORDS]; // uint32_t uda_zeros[UDA_WORDS]; // memset(uda_zeros, 0, UDA_WORDS*4); // // Should get non-empty UDA // wordcpy(uda_local, (void *)uda, UDA_WORDS); // if (memeq(uda_local, uda_zeros, UDA_WORDS*4)) { // test_puts("FAIL: UDA empty\r\n"); // anyfailed = 1; // } uint32_t udi_local[2]; uint32_t udi_zeros[2]; memset(udi_zeros, 0, 2 * 4); // Should get non-empty UDI wordcpy(udi_local, (void *)udi, 2); if (memeq(udi_local, udi_zeros, 2 * 4)) { puts("FAIL: UDI empty\r\n"); anyfailed = 1; } // Should be able to write to CDI in fw (non-app) mode. uint32_t cdi_writetest[8] = {0xdeafbeef, 0xdeafbeef, 0xdeafbeef, 0xdeafbeef, 0xdeafbeef, 0xdeafbeef, 0xdeafbeef, 0xdeafbeef}; uint32_t cdi_readback[8]; wordcpy((void *)cdi, cdi_writetest, 8); wordcpy(cdi_readback, (void *)cdi, 8); if (!memeq(cdi_writetest, cdi_readback, 8 * 4)) { puts("FAIL: Can't write CDI in fw mode\r\n"); anyfailed = 1; } // Test FW-RAM. *fw_ram = 0x12; if (*fw_ram != 0x12) { puts("FAIL: Can't write and read FW RAM in fw mode\r\n"); anyfailed = 1; } uint32_t sw = *switch_app; if (sw != 0) { puts("FAIL: switch_app is not 0 in fw mode\r\n"); anyfailed = 1; } // Store function pointer to blake2s() so it's reachable from app *fw_blake2s_addr = (uint32_t)blake2s; // Turn on application mode. // ------------------------- *switch_app = 1; sw = *switch_app; if (sw != 0xffffffff) { puts("FAIL: switch_app is not 0xffffffff in app mode\r\n"); anyfailed = 1; } // Should NOT be able to read from UDS in app-mode. wordcpy(uds_local, (void *)uds, 8); if (!memeq(uds_local, uds_zeros, 8 * 4)) { puts("FAIL: Read from UDS in app-mode\r\n"); anyfailed = 1; } // TODO test UDA once we have in in real hw // // Now we should NOT be able to read from UDA. // wordcpy(uda_local, (void *)uda, UDA_WORDS); // if (!memeq(uda_local, uda_zeros, UDA_WORDS*4)) { // test_puts("FAIL: Read from UDA in app-mode\r\n"); // anyfailed = 1; // } uint32_t cdi_local[8]; uint32_t cdi_local2[8]; uint32_t cdi_zeros[8]; memset(cdi_zeros, 0, 8 * 4); wordcpy(cdi_local, (void *)cdi, 8); // Write to CDI should NOT have any effect in app mode. wordcpy((void *)cdi, cdi_zeros, 8); wordcpy(cdi_local2, (void *)cdi, 8); if (!memeq(cdi_local, cdi_local2, 8 * 4)) { puts("FAIL: Write to CDI in app-mode\r\n"); anyfailed = 1; } // Test FW-RAM. *fw_ram = 0x21; if (*fw_ram == 0x21) { puts("FAIL: Write and read FW RAM in app-mode\r\n"); anyfailed = 1; } puts("Testing timer...\r\n"); // Matching clock at 18 MHz, giving us timer in seconds *timer_prescaler = 18 * 1000000; // Test timer expiration after 1s *timer = 1; // Write anything to start timer *timer_ctrl = 1; for (;;) { if (*timer_status & (1 << TK1_MMIO_TIMER_STATUS_READY_BIT)) { // Timer expired (it is ready to start again) break; } } // Test to interrupt a timer - and reads from timer register // Starting 10s timer and interrupting it in 3s... *timer = 10; *timer_ctrl = 1; uint32_t last_timer = 10; for (int i = 0; i < 3; i++) { last_timer = wait_timer_tick(last_timer); } // Write anything to stop the timer *timer_ctrl = 1; if (!(*timer_status & (1 << TK1_MMIO_TIMER_STATUS_READY_BIT))) { puts("FAIL: Timer didn't stop\r\n"); anyfailed = 1; } if (*timer != 10) { puts("FAIL: Timer didn't reset to 10\r\n"); anyfailed = 1; } // Testing the blake2s MMIO in app mode fw_blake2s = (volatile int (*)(void *, unsigned long, const void *, unsigned long, const void *, unsigned long, blake2s_ctx *)) * fw_blake2s_addr; char msg[17] = "dldlkjsdkljdslsdj"; uint32_t digest0[8]; uint32_t digest1[8]; blake2s_ctx b2s_ctx; blake2s(&digest0[0], 32, NULL, 0, &msg, 17, &b2s_ctx); fw_blake2s(&digest1[0], 32, NULL, 0, &msg, 17, &b2s_ctx); puts("digest #0: \r\n"); hexdump((uint8_t *)digest0, 32); puts("digest #1: \r\n"); hexdump((uint8_t *)digest1, 32); if (!memeq(digest0, digest1, 32)) { puts("FAIL: Digests not the same\r\n"); anyfailed = 1; } // Check and display test results. if (anyfailed) { puts("Some test FAILED!\r\n"); } else { puts("All tests passed.\r\n"); } puts("\r\nHere are 256 bytes from the TRNG:\r\n"); for (int j = 0; j < 8; j++) { for (int i = 0; i < 8; i++) { while ((*trng_status & (1 << TK1_MMIO_TRNG_STATUS_READY_BIT)) == 0) { } uint32_t rnd = *trng_entropy; puthexn((uint8_t *)&rnd, 4); puts(" "); } puts("\r\n"); } puts("\r\n"); puts("Now echoing what you type...\r\n"); for (;;) { in = readbyte(); // blocks writebyte(in); } }