/* * Copyright (C) 2022, 2023 - Tillitis AB * SPDX-License-Identifier: GPL-2.0-only */ #include "../tk1/lib.h" #include "../tk1/proto.h" #include "../tk1/types.h" #include "../tk1_mem.h" #define USBMODE_PACKET_SIZE 64 // clang-format off volatile uint32_t *tk1name0 = (volatile uint32_t *)TK1_MMIO_TK1_NAME0; volatile uint32_t *tk1name1 = (volatile uint32_t *)TK1_MMIO_TK1_NAME1; volatile uint32_t *uds = (volatile uint32_t *)TK1_MMIO_UDS_FIRST; volatile uint32_t *cdi = (volatile uint32_t *)TK1_MMIO_TK1_CDI_FIRST; volatile uint32_t *udi = (volatile uint32_t *)TK1_MMIO_TK1_UDI_FIRST; volatile uint8_t *fw_ram = (volatile uint8_t *)TK1_MMIO_FW_RAM_BASE; volatile uint32_t *system_reset = (volatile uint32_t *)TK1_MMIO_TK1_SYSTEM_RESET; volatile uint32_t *timer = (volatile uint32_t *)TK1_MMIO_TIMER_TIMER; volatile uint32_t *timer_prescaler = (volatile uint32_t *)TK1_MMIO_TIMER_PRESCALER; volatile uint32_t *timer_status = (volatile uint32_t *)TK1_MMIO_TIMER_STATUS; volatile uint32_t *timer_ctrl = (volatile uint32_t *)TK1_MMIO_TIMER_CTRL; volatile uint32_t *trng_status = (volatile uint32_t *)TK1_MMIO_TRNG_STATUS; volatile uint32_t *trng_entropy = (volatile uint32_t *)TK1_MMIO_TRNG_ENTROPY; // clang-format on #define UDS_WORDS 8 #define UDI_WORDS 2 #define CDI_WORDS 8 void *memcpy(void *dest, const void *src, size_t n) { uint8_t *src_byte = (uint8_t *)src; uint8_t *dest_byte = (uint8_t *)dest; for (int i = 0; i < n; i++) { dest_byte[i] = src_byte[i]; } return dest; } static void write_with_header(const uint8_t *buf, size_t nbytes, enum mode mode) { // Append USB Mode Protocol header: // 1 byte mode // 1 byte length writebyte(mode); writebyte(nbytes); for (int i = 0; i < nbytes; i++) { writebyte(buf[i]); } } static void write(const uint8_t *buf, size_t nbytes) { uint8_t len; while (nbytes > 0) { // We split the data into chunks that will fit in the // USB Mode Protocol with some spare change. len = nbytes < USBMODE_PACKET_SIZE ? nbytes : USBMODE_PACKET_SIZE; write_with_header((const uint8_t *)buf, len, MODE_CDC); buf += len; nbytes -= len; } } unsigned strlen(const char *str) { const char *s; for (s = str; *s; ++s) ; return (s - str); } void puts(char *buf) { size_t nbytes = strlen(buf); write((const uint8_t *)buf, nbytes); } void hex(uint8_t buf[2], const uint8_t c) { unsigned int upper = (c >> 4) & 0xf; unsigned int lower = c & 0xf; buf[0] = upper < 10 ? '0' + upper : 'a' - 10 + upper; buf[1] = lower < 10 ? '0' + lower : 'a' - 10 + lower; } void puthex(uint8_t c) { uint8_t buf[2]; hex(buf, c); write(buf, 2); } void puthexn(uint8_t *p, int n) { for (int i = 0; i < n; i++) { puthex(p[i]); } } void hexdump(void *buf, int len) { uint8_t *byte_buf = (uint8_t *)buf; for (int i = 0; i < len; i++) { puthex(byte_buf[i]); if (i % 2 == 1) { puts(" "); } if (i != 1 && i % 16 == 1) { puts("\r\n"); } } puts("\r\n"); } void reverseword(uint32_t *wordp) { *wordp = ((*wordp & 0xff000000) >> 24) | ((*wordp & 0x00ff0000) >> 8) | ((*wordp & 0x0000ff00) << 8) | ((*wordp & 0x000000ff) << 24); } uint32_t wait_timer_tick(uint32_t last_timer) { uint32_t newtimer; for (;;) { newtimer = *timer; if (newtimer != last_timer) { return newtimer; } } } void zero_fwram(void) { for (int i = 0; i < TK1_MMIO_FW_RAM_SIZE; i++) { fw_ram[i] = 0x00; } } int check_fwram_zero_except(unsigned int offset, uint8_t expected_val) { int failed = 0; for (unsigned int i = 0; i < TK1_MMIO_FW_RAM_SIZE; i++) { uint32_t addr = TK1_MMIO_FW_RAM_BASE + i; uint8_t *p = (uint8_t *)addr; uint8_t val = *(volatile uint8_t *)p; int failed_now = 0; if (i == offset) { if (val != expected_val) { failed_now = 1; puts(" wrong value at: "); } } else { if (val != 0) { failed_now = 1; puts(" not zero at: "); } } if (failed_now) { failed = 1; reverseword(&addr); puthexn((uint8_t *)&addr, 4); puts("\r\n"); } } return failed; } void failmsg(char *s) { puts("FAIL: "); puts(s); puts("\r\n"); } int main(void) { uint8_t in = 0; uint8_t mode = 0; uint8_t mode_bytes_left = 0; // Hard coded test UDS in ../../data/uds.hex // clang-format off uint32_t uds_test[8] = { 0x80818283, 0x94959697, 0xa0a1a2a3, 0xb4b5b6b7, 0xc0c1c2c3, 0xd4d5d6d7, 0xe0e1e2e3, 0xf4f5f6f7, }; // clang-format on // Wait for terminal program and a character to be typed in = readbyte(&mode, &mode_bytes_left); puts("\r\nI'm testfw on:"); // Output the TK1 core's NAME0 and NAME1 uint32_t name; wordcpy_s(&name, 1, (void *)tk1name0, 1); reverseword(&name); write((const uint8_t *)&name, 4); puts(" "); wordcpy_s(&name, 1, (void *)tk1name1, 1); reverseword(&name); write((const uint8_t *)&name, 4); puts("\r\n"); uint32_t zeros[8]; memset(zeros, 0, 8 * 4); int anyfailed = 0; uint32_t uds_local[UDS_WORDS]; // Should get non-empty UDS wordcpy_s(uds_local, UDS_WORDS, (void *)uds, UDS_WORDS); if (memeq(uds_local, zeros, UDS_WORDS * 4)) { failmsg("UDS empty"); anyfailed = 1; } puts("\r\nUDS: "); for (int i = 0; i < UDS_WORDS * 4; i++) { puthex(((uint8_t *)uds_local)[i]); } puts("\r\n"); if (!memeq(uds_local, uds_test, UDS_WORDS * 4)) { failmsg("UDS not equal to test UDS"); anyfailed = 1; } // Should NOT be able to read from UDS again wordcpy_s(uds_local, UDS_WORDS, (void *)uds, UDS_WORDS); if (!memeq(uds_local, zeros, UDS_WORDS * 4)) { failmsg("Read UDS a second time"); anyfailed = 1; } uint32_t udi_local[UDI_WORDS]; // Should get non-empty UDI wordcpy_s(udi_local, UDI_WORDS, (void *)udi, UDI_WORDS); if (memeq(udi_local, zeros, UDI_WORDS * 4)) { failmsg("UDI empty"); anyfailed = 1; } // Should be able to write to CDI in fw (non-app) mode. uint32_t cdi_writetest[CDI_WORDS] = {0xdeafbeef, 0xdeafbeef, 0xdeafbeef, 0xdeafbeef, 0xdeafbeef, 0xdeafbeef, 0xdeafbeef, 0xdeafbeef}; uint32_t cdi_readback[CDI_WORDS]; wordcpy_s((void *)cdi, CDI_WORDS, cdi_writetest, CDI_WORDS); wordcpy_s(cdi_readback, CDI_WORDS, (void *)cdi, CDI_WORDS); if (!memeq(cdi_writetest, cdi_readback, CDI_WORDS * 4)) { failmsg("Can't write CDI in fw mode"); anyfailed = 1; } // Should be able to read bytes from CDI. uint8_t cdi_readback_bytes[CDI_WORDS * 4]; memcpy(cdi_readback_bytes, (void *)cdi, CDI_WORDS * 4); if (!memeq(cdi_writetest, cdi_readback_bytes, CDI_WORDS * 4)) { failmsg("Can't read bytes from CDI"); anyfailed = 1; } // Test FW_RAM. puts("\r\nTesting FW_RAM (takes 50s on hw)...\r\n"); for (unsigned int i = 0; i < TK1_MMIO_FW_RAM_SIZE; i++) { zero_fwram(); *(volatile uint8_t *)(TK1_MMIO_FW_RAM_BASE + i) = 0x42; int fwram_fail = check_fwram_zero_except(i, 0x42); if (fwram_fail) { anyfailed = 1; } } puts("\r\nTesting timer... 3"); // Matching clock at 24 MHz, giving us timer in seconds *timer_prescaler = 24 * 1000000; // Test timer expiration after 1s *timer = 1; // Start the timer *timer_ctrl = (1 << TK1_MMIO_TIMER_CTRL_START_BIT); while (*timer_status & (1 << TK1_MMIO_TIMER_STATUS_RUNNING_BIT)) { } // Now timer has expired and is ready to run again puts(" 2"); // Test to interrupt a timer - and reads from timer register // Starting 10s timer and interrupting it in 3s... *timer = 10; *timer_ctrl = (1 << TK1_MMIO_TIMER_CTRL_START_BIT); uint32_t last_timer = 10; for (int i = 0; i < 3; i++) { last_timer = wait_timer_tick(last_timer); } // Stop the timer *timer_ctrl = (1 << TK1_MMIO_TIMER_CTRL_STOP_BIT); puts(" 1. done.\r\n"); if (*timer_status & (1 << TK1_MMIO_TIMER_STATUS_RUNNING_BIT)) { failmsg("Timer didn't stop"); anyfailed = 1; } if (*timer != 10) { failmsg("Timer didn't reset to 10"); anyfailed = 1; } // Check and display test results. puts("\r\n--> "); if (anyfailed) { puts("Some test FAILED!\r\n"); } else { puts("All tests passed.\r\n"); } puts("\r\nHere are 256 bytes from the TRNG:\r\n"); for (int j = 0; j < 8; j++) { for (int i = 0; i < 8; i++) { while ((*trng_status & (1 << TK1_MMIO_TRNG_STATUS_READY_BIT)) == 0) { } uint32_t rnd = *trng_entropy; puthexn((uint8_t *)&rnd, 4); puts(" "); } puts("\r\n"); } puts("\r\n"); puts("Now echoing what you type...Type + to reset device\r\n"); for (;;) { in = readbyte(&mode, &mode_bytes_left); if (in == '+') { *system_reset = 1; } writebyte(MODE_CDC); writebyte(1); writebyte(in); } }