//====================================================================== // // blake2s.c // --------- // // A simple blake2s Reference Implementation. //====================================================================== #include "../types.h" #include "../lib.h" #include "blake2s.h" // Dummy printf() for verbose mode static void printf(const char *format, ...) { } #define VERBOSE 0 #define SHOW_V 0 #define SHOW_M_WORDS 0 // Cyclic right rotation. #ifndef ROTR32 #define ROTR32(x, y) (((x) >> (y)) ^ ((x) << (32 - (y)))) #endif // Little-endian byte access. #define B2S_GET32(p) \ (((uint32_t) ((uint8_t *) (p))[0]) ^ \ (((uint32_t) ((uint8_t *) (p))[1]) << 8) ^ \ (((uint32_t) ((uint8_t *) (p))[2]) << 16) ^ \ (((uint32_t) ((uint8_t *) (p))[3]) << 24)) // Initialization Vector. static const uint32_t blake2s_iv[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; //------------------------------------------------------------------ //------------------------------------------------------------------ void print_v(uint32_t *v) { printf("0x%08x, 0x%08x, 0x%08x, 0x%08x\n", v[0], v[1], v[2], v[3]); printf("0x%08x, 0x%08x, 0x%08x, 0x%08x\n", v[4], v[5], v[6], v[7]); printf("0x%08x, 0x%08x, 0x%08x, 0x%08x\n", v[8], v[9], v[10], v[11]); printf("0x%08x, 0x%08x, 0x%08x, 0x%08x\n", v[12], v[13], v[14], v[15]); printf("\n"); } //------------------------------------------------------------------ // print_ctx() // Print the contents of the context data structure. //------------------------------------------------------------------ void print_ctx(blake2s_ctx *ctx) { printf("Chained state (h):\n"); printf("0x%08x, 0x%08x, 0x%08x, 0x%08x, ", ctx->h[0], ctx->h[1], ctx->h[2], ctx->h[3]); printf("0x%08x, 0x%08x, 0x%08x, 0x%08x", ctx->h[4], ctx->h[5], ctx->h[6], ctx->h[7]); printf("\n"); printf("Byte counter (t):\n"); printf("0x%08x, 0x%08x", ctx->t[0], ctx->t[1]); printf("\n"); printf("\n"); } //------------------------------------------------------------------ // B2S_G macro redefined as a G function. // Allows us to output intermediate values for debugging. //------------------------------------------------------------------ void G(uint32_t *v, uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t x, uint32_t y) { if (VERBOSE) { printf("G started.\n"); } if (SHOW_V) { printf("v before processing:\n"); print_v(&v[0]); } if (SHOW_M_WORDS) { printf("x: 0x%08x, y: 0x%08x\n", x, y); } v[a] = v[a] + v[b] + x; v[d] = ROTR32(v[d] ^ v[a], 16); v[c] = v[c] + v[d]; v[b] = ROTR32(v[b] ^ v[c], 12); v[a] = v[a] + v[b] + y; v[d] = ROTR32(v[d] ^ v[a], 8); v[c] = v[c] + v[d]; v[b] = ROTR32(v[b] ^ v[c], 7); if (SHOW_V) { printf("v after processing:\n"); print_v(&v[0]); } if (VERBOSE) { printf("G completed.\n\n"); } } //------------------------------------------------------------------ // Compression function. "last" flag indicates last block. //------------------------------------------------------------------ static void blake2s_compress(blake2s_ctx *ctx, int last) { const uint8_t sigma[10][16] = { {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3}, {11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4}, {7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8}, {9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13}, {2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9}, {12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11}, {13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10}, {6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5}, {10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0} }; int i; uint32_t v[16], m[16]; if (VERBOSE) { printf("blake2s_compress started.\n"); } // init work variables for (i = 0; i < 8; i++) { v[i] = ctx->h[i]; v[i + 8] = blake2s_iv[i]; } // low 32 bits of offset // high 32 bits if (VERBOSE) { printf("t[0]: 0x%08x, t[1]: 0x%08x\n", ctx->t[0], ctx->t[1]); } v[12] ^= ctx->t[0]; v[13] ^= ctx->t[1]; // last block flag set ? if (last) { v[14] = ~v[14]; } // get little-endian words for (i = 0; i < 16; i++) { m[i] = B2S_GET32(&ctx->b[4 * i]); } if (VERBOSE) { printf("v before G processing:\n"); print_v(&v[0]); } // Ten rounds of the G function applied on rows, diagonal. for (i = 0; i < 10; i++) { if (VERBOSE) { printf("Round %02d:\n", (i + 1)); printf("Row processing started.\n"); } G(&v[0], 0, 4, 8, 12, m[sigma[i][ 0]], m[sigma[i][ 1]]); G(&v[0], 1, 5, 9, 13, m[sigma[i][ 2]], m[sigma[i][ 3]]); G(&v[0], 2, 6, 10, 14, m[sigma[i][ 4]], m[sigma[i][ 5]]); G(&v[0], 3, 7, 11, 15, m[sigma[i][ 6]], m[sigma[i][ 7]]); if (VERBOSE) { printf("Row processing completed.\n"); printf("Diagonal processing started.\n"); } G(&v[0], 0, 5, 10, 15, m[sigma[i][ 8]], m[sigma[i][ 9]]); G(&v[0], 1, 6, 11, 12, m[sigma[i][10]], m[sigma[i][11]]); G(&v[0], 2, 7, 8, 13, m[sigma[i][12]], m[sigma[i][13]]); G(&v[0], 3, 4, 9, 14, m[sigma[i][14]], m[sigma[i][15]]); if (VERBOSE) { printf("Diagonal processing completed.\n"); printf("\n"); } } if (VERBOSE) { printf("v after G processing:\n"); print_v(&v[0]); } // Update the hash state. for (i = 0; i < 8; ++i) { ctx->h[i] ^= v[i] ^ v[i + 8]; } if (VERBOSE) { printf("blake2s_compress completed.\n"); } } //------------------------------------------------------------------ // Initialize the hashing context "ctx" with optional key "key". // 1 <= outlen <= 32 gives the digest size in bytes. // Secret key (also <= 32 bytes) is optional (keylen = 0). //------------------------------------------------------------------ int blake2s_init(blake2s_ctx *ctx, size_t outlen, const void *key, size_t keylen) // (keylen=0: no key) { size_t i; if (VERBOSE) { printf("blake2s_init started.\n"); printf("Context before blake2s_init processing:\n"); print_ctx(ctx); } if (outlen == 0 || outlen > 32 || keylen > 32) return -1; // illegal parameters for (i = 0; i < 8; i++) // state, "param block" ctx->h[i] = blake2s_iv[i]; ctx->h[0] ^= 0x01010000 ^ (keylen << 8) ^ outlen; ctx->t[0] = 0; // input count low word ctx->t[1] = 0; // input count high word ctx->c = 0; // pointer within buffer ctx->outlen = outlen; for (i = keylen; i < 64; i++) // zero input block ctx->b[i] = 0; if (keylen > 0) { blake2s_update(ctx, key, keylen); ctx->c = 64; // at the end } if (VERBOSE) { printf("Context after blake2s_init processing:\n"); print_ctx(ctx); printf("blake2s_init completed.\n"); } return 0; } //------------------------------------------------------------------ // Add "inlen" bytes from "in" into the hash. //------------------------------------------------------------------ void blake2s_update(blake2s_ctx *ctx, const void *in, size_t inlen) // data bytes { size_t i; if (VERBOSE) { printf("blake2s_update started.\n"); printf("Context before blake2s_update processing:\n"); print_ctx(ctx); } for (i = 0; i < inlen; i++) { if (ctx->c == 64) { // buffer full ? ctx->t[0] += ctx->c; // add counters if (ctx->t[0] < ctx->c) // carry overflow ? ctx->t[1]++; // high word blake2s_compress(ctx, 0); // compress (not last) ctx->c = 0; // counter to zero } ctx->b[ctx->c++] = ((const uint8_t *) in)[i]; } if (VERBOSE) { printf("Context after blake2s_update processing:\n"); print_ctx(ctx); printf("blake2s_update completed.\n"); } } //------------------------------------------------------------------ // Generate the message digest (size given in init). // Result placed in "out". //------------------------------------------------------------------ void blake2s_final(blake2s_ctx *ctx, void *out) { size_t i; if (VERBOSE) { printf("blake2s_final started.\n"); printf("Context before blake2s_final processing:\n"); print_ctx(ctx); } ctx->t[0] += ctx->c; // mark last block offset // carry overflow // high word if (ctx->t[0] < ctx->c) { ctx->t[1]++; } // fill up with zeros // final block flag = 1 while (ctx->c < 64) { ctx->b[ctx->c++] = 0; } blake2s_compress(ctx, 1); // little endian convert and store for (i = 0; i < ctx->outlen; i++) { ((uint8_t *) out)[i] = (ctx->h[i >> 2] >> (8 * (i & 3))) & 0xFF; } if (VERBOSE) { printf("Context after blake2s_final processing:\n"); print_ctx(ctx); printf("blake2s_final completed.\n"); } } //------------------------------------------------------------------ // Convenience function for all-in-one computation. //------------------------------------------------------------------ int blake2s(void *out, size_t outlen, const void *key, size_t keylen, const void *in, size_t inlen, blake2s_ctx *ctx) { if (blake2s_init(ctx, outlen, key, keylen)) return -1; blake2s_update(ctx, in, inlen); blake2s_final(ctx, out); return 0; } //====================================================================== //======================================================================