

USB-to-Serial Interface

The CH552 is loaded with a TTY ACM firmware, to act as a USB-to-Serial converter

Setting	Actual	% error
9600	9615.38	0.16%
14400	14492.75	0.64%
19200	19230.77	0.16%
38400	38461.54	0.16%
57600	58823.53	2.12%
100000	100000	0.00%
115200	125000	8.51%
128000	142857.14	11.61%
256000	333333.33	30.21%
1000000	1000000	0.00%

Note: RTS/CTS lines are not implemented in the device firmware, but are included in the hardware design in case they need to be implemented. The intent is to use them in the 'modern' sense: Each receiving device asserts it's RTS signal as long as it is able to receive at least one byte of data on it's RX line, and clears it when it is not able to receive data. Each transmitting device will check their RTS input before transmitting on their TX line.

Copyright Tillitis AB 2022

This document describes Open Hardware and is licensed under the CERN-OHL-S v2.

You may redistribute and modify this source and make products using it under the terms of the CERN-OHL-S v2 (https://ohwr.org/cern_ohl_s_v2.txt).

This source is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.

Sheet: /USB to Serial converter/ File: usb to serial.kicad sch

-Serial Interfac

	Size: A4	Date: 2021-11-14	Rev: V1	
	KiCad E.D.A. kid	ad (6.0.4)	ld: 3/4	

1.2V regulator, supplies VCC and VCC_PLL +5٧ +1V2 U2 MIC5258-1.2YM5 Vout → GND \downarrow GND ightarrow GND TODO: Drop C1 or change to 1uF VCC OK TODO: Change C5 to 1uF (changes per datasheet minimum recommendations)

+3.3V

R22

___ 10uF

↓ GND

3.3V regulator, supplies VCCIO

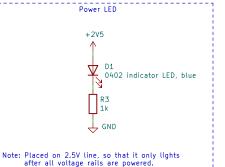
U9 NCP752BSN33T1G

 $\stackrel{\textstyle \downarrow}{\smile}$ GND

+5٧

10uF

TODO: Change C6 to 1uF


TODO: Change C3 to 1uF

(changes per datasheet minimum recommendations)

Power Supply

Power Supply Test Points +3.3V+2V5 +1V2 Q TP4 O TP2 3٧3 1V2 GND GND

Regulator for 2.5V supply from 5V USB +5V +2V5 U1 MCP1824T-2502E0T 2,5V, 10mA PWRGD **C**2 10uF • 10uF $\stackrel{\textstyle \downarrow}{\smile}$ GND \downarrow GND GND TODO: Change C2 to 4.7uF TODO: Change C4 to 1uF (changes per datasheet minimum recommendations)

From the Lattice documentation:

4.5. Power-up Supply Sequence

It is recommended to bring up the power supplies in the following order. Note that there is no specified timing delay between the power supplies, however, there is a requirement for each supply to reach a level of 0.5 V, or higher,

- 1. Vcc and VccpLL should be the first two supplies to be applied. Note that these two supplies can be tied together subject to the recommendation to include a RC-based noise filter on the VCCPLL. Refer to iCE40 Hardware Checklist
- 2. SPI_Vccio1 should be the next supply, and can be applied any time after the previous supplies (Vcc and VccPLL) have reached as level of 0.5 V or higher.
- 3. VPP_2V5 should be the next supply, and can be applied any time after previous supplies (Vcc, VccpLL and SPI_Vccio1) have reached a level of 0.5 V or higher.
- 4. Other Supplies (VCCIOO and VCCIO2) do not affect device power-up functionality, and they can be applied any time after the initial power supplies (Vcc and VccPLL) have reached a level of 0.5 V or greater. There is no power down sequence required. However, when partial power supplies are powered down, it is required the above sequence to be followed when these supplies are re-powered up again.

Power-on sequence:

- 1. External power (3.3V_IN) is applied.
- U2 (1.2V regulator) turns on.
- 3. Once 1.2V output is stable, U1 releases its PG output, allowing VCC_OK to go high.
- 4. U9 (3.3V regulator) turns on.
 5. Once the 3.3V output is stable, U9 releases its PG output, allowing SPI_VCC_OK to go high.
- 6. U31(2.5V regulator) turns on. 7. After a short time, the internal POR circuit in the ICE40 allows it to boot.

Copyright Tillitis AB 2022

This document describes Open Hardware and is licensed under the CERN-OHL-S v2.

You may redistribute and modify this source and make products using it under the terms of the CERN-OHL-S v2 (https://ohwr.org/cern_ohl_s_v2.txt).

This source is distributed WITHOUT ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-S v2 for applicable conditions.

Sheet: /Power Supply/ File: powersupply.kicad_sch

Title: Power	Supply
Size: A4	Date: 20

021-11-14 Rev: V1 KiCad E.D.A. kicad (6.0.4) Id: 4/4