make a spifw to test spi access from fw

This commit is contained in:
dehanj 2024-07-04 15:02:16 +02:00 committed by Daniel Jobson
parent e0a32da775
commit a1e3172d95
No known key found for this signature in database
GPG Key ID: 3707A9DBF4BB8F1A
9 changed files with 623 additions and 2 deletions

View File

@ -107,6 +107,16 @@ TESTFW_OBJS = \
$(P)/fw/tk1/lib.o \
$(P)/fw/tk1/blake2s/blake2s.o
SPIFW_OBJS = \
$(P)/fw/spifw/main.o \
$(P)/fw/spifw/start.o \
$(P)/fw/spifw/spi.o \
$(P)/fw/spifw/flash.o \
$(P)/fw/tk1/proto.o \
$(P)/fw/tk1/lib.o \
$(P)/fw/tk1/assert.o \
$(P)/fw/tk1/led.o
#-------------------------------------------------------------------
# All: Complete build of HW and FW.
#-------------------------------------------------------------------
@ -143,6 +153,7 @@ LDFLAGS=-T $(P)/fw/tk1/firmware.lds
$(FIRMWARE_OBJS): $(FIRMWARE_DEPS)
$(TESTFW_OBJS): $(FIRMWARE_DEPS)
$(SPIFW_OBJS): $(FIRMWARE_DEPS)
firmware.elf: $(FIRMWARE_OBJS) $(P)/fw/tk1/firmware.lds
$(CC) $(CFLAGS) $(FIRMWARE_OBJS) $(LDFLAGS) -o $@
@ -158,6 +169,9 @@ splint:
testfw.elf: $(TESTFW_OBJS) $(P)/fw/tk1/firmware.lds
$(CC) $(CFLAGS) $(TESTFW_OBJS) $(LDFLAGS) -o $@
spifw.elf: $(SPIFW_OBJS) $(P)/fw/tk1/firmware.lds
$(CC) $(CFLAGS) $(SPIFW_OBJS) $(LDFLAGS) -o $@
# Generate a fake BRAM file that will be filled in later after place-n-route
bram_fw.hex:
$(ICESTORM_PATH)icebram -v -g 32 $(BRAM_FW_SIZE) > $@
@ -166,6 +180,8 @@ firmware.hex: firmware.bin firmware_size_mismatch
python3 $(P)/tools/makehex/makehex.py $< $(BRAM_FW_SIZE) > $@
testfw.hex: testfw.bin testfw_size_mismatch
python3 $(P)/tools/makehex/makehex.py $< $(BRAM_FW_SIZE) > $@
spifw.hex: spifw.bin testfw_size_mismatch
python3 $(P)/tools/makehex/makehex.py $< $(BRAM_FW_SIZE) > $@
.PHONY: check-binary-hashes
check-binary-hashes:
@ -273,6 +289,10 @@ application_fpga_testfw.bin: application_fpga.asc bram_fw.hex testfw.hex
$(ICESTORM_PATH)icepack $<.tmp $@
@-$(RM) $<.tmp
application_fpga_spifw.bin: application_fpga.asc bram_fw.hex spifw.hex
$(ICESTORM_PATH)icebram -v bram_fw.hex spifw.hex < $< > $<.tmp
$(ICESTORM_PATH)icepack $<.tmp $@
@-$(RM) $<.tmp
#-------------------------------------------------------------------
# post-synthesis functional simulation.
#-------------------------------------------------------------------

View File

@ -0,0 +1,193 @@
// Copyright (C) 2022, 2023 - Tillitis AB
// SPDX-License-Identifier: GPL-2.0-only
#include "flash.h"
#include "../tk1/types.h"
#include "spi.h"
#include <stdbool.h>
// #include <stddef.h>
// #include <stdint.h>
#include "../tk1_mem.h"
// clang-format off
static volatile uint32_t *timer = (volatile uint32_t *)TK1_MMIO_TIMER_TIMER;
static volatile uint32_t *timer_prescaler = (volatile uint32_t *)TK1_MMIO_TIMER_PRESCALER;
static volatile uint32_t *timer_status = (volatile uint32_t *)TK1_MMIO_TIMER_STATUS;
static volatile uint32_t *timer_ctrl = (volatile uint32_t *)TK1_MMIO_TIMER_CTRL;
// clang-format on
// CPU clock frequency in Hz
#define CPUFREQ 18000000
static void delay(int timeout_ms)
{
// Tick once every centisecond
*timer_prescaler = CPUFREQ / 100;
*timer = timeout_ms / 10;
*timer_ctrl |= (1 << TK1_MMIO_TIMER_CTRL_START_BIT);
while (*timer_status != 0) {
}
// Stop timer
*timer_ctrl |= (1 << TK1_MMIO_TIMER_CTRL_STOP_BIT);
}
bool flash_is_busy()
{
uint8_t tx_buf = READ_STATUS_REG_1;
uint8_t rx_buf = {0x00};
spi_transfer(&tx_buf, sizeof(tx_buf), &rx_buf, sizeof(rx_buf));
if (rx_buf & (1 << STATUS_REG_BUSY_BIT)) {
return true;
}
return false;
}
// Blocking until !busy
void flash_wait_busy()
{
while (flash_is_busy()) {
delay(10);
}
}
void flash_write_enable()
{
uint8_t tx_buf = WRITE_ENABLE;
spi_write(&tx_buf, sizeof(tx_buf), NULL, 0);
}
void flash_write_disable()
{
uint8_t tx_buf = WRITE_DISABLE;
spi_write(&tx_buf, sizeof(tx_buf), NULL, 0);
}
void flash_sector_erase(uint32_t address)
{
uint8_t tx_buf[4] = {0x00};
tx_buf[0] = SECTOR_ERASE;
tx_buf[1] = (address >> ADDR_BYTE_3_BIT) & 0xFF;
tx_buf[2] = (address >> ADDR_BYTE_2_BIT) & 0xFF;
tx_buf[3] = (address >> ADDR_BYTE_1_BIT) & 0xFF;
flash_write_enable();
spi_write(tx_buf, sizeof(tx_buf), NULL, 0);
flash_wait_busy();
}
void flash_block_32_erase(uint32_t address)
{
uint8_t tx_buf[4] = {0x00};
tx_buf[0] = BLOCK_ERASE_32K;
tx_buf[1] = (address >> ADDR_BYTE_3_BIT) & 0xFF;
tx_buf[2] = (address >> ADDR_BYTE_2_BIT) & 0xFF;
tx_buf[3] = (address >> ADDR_BYTE_1_BIT) & 0xFF;
flash_write_enable();
spi_write(tx_buf, sizeof(tx_buf), NULL, 0);
flash_wait_busy();
}
void flash_block_64_erase(uint32_t address)
{
uint8_t tx_buf[4] = {0x00};
tx_buf[0] = BLOCK_ERASE_64K;
tx_buf[1] = (address >> ADDR_BYTE_3_BIT) & 0xFF;
tx_buf[2] = (address >> ADDR_BYTE_2_BIT) & 0xFF;
tx_buf[3] = (address >> ADDR_BYTE_1_BIT) & 0xFF;
flash_write_enable();
spi_write(tx_buf, sizeof(tx_buf), NULL, 0);
flash_wait_busy();
}
void flash_release_powerdown()
{
uint8_t tx_buf[4] = {0x00};
tx_buf[0] = RELEASE_POWER_DOWN;
spi_write(tx_buf, sizeof(tx_buf), NULL, 0);
}
void flash_powerdown()
{
uint8_t tx_buf = POWER_DOWN;
spi_write(&tx_buf, sizeof(tx_buf), NULL, 0);
}
void flash_read_manufacturer_device_id(uint8_t *device_id)
{
uint8_t tx_buf[4] = {0x00};
tx_buf[0] = READ_MANUFACTURER_ID;
spi_transfer(tx_buf, sizeof(tx_buf), device_id, 2);
}
void flash_read_jedec_id(uint8_t *jedec_id)
{
uint8_t tx_buf = READ_JEDEC_ID;
spi_transfer(&tx_buf, sizeof(tx_buf), jedec_id, 3);
}
void flash_read_unique_id(uint8_t *unique_id)
{
uint8_t tx_buf[5] = {0x00};
tx_buf[0] = READ_UNIQUE_ID;
spi_transfer(tx_buf, sizeof(tx_buf), unique_id, 8);
}
void flash_read_status(uint8_t *status_reg)
{
uint8_t tx_buf = READ_STATUS_REG_1;
spi_transfer(&tx_buf, sizeof(tx_buf), status_reg, 1);
tx_buf = READ_STATUS_REG_2;
spi_transfer(&tx_buf, sizeof(tx_buf), status_reg + 1, 1);
}
int flash_read_data(uint32_t address, uint8_t *dest_buf, size_t size)
{
uint8_t tx_buf[4] = {0x00};
tx_buf[0] = READ_DATA;
tx_buf[1] = (address >> ADDR_BYTE_3_BIT) & 0xFF;
tx_buf[2] = (address >> ADDR_BYTE_2_BIT) & 0xFF;
tx_buf[3] = (address >> ADDR_BYTE_1_BIT) & 0xFF;
return spi_transfer(tx_buf, sizeof(tx_buf), dest_buf, size);
}
int flash_write_data(uint32_t address, uint8_t *data, size_t size)
{
if (size <= 0 || size > 256) {
return -1;
}
uint8_t tx_buf[4] = {0x00};
tx_buf[0] = PAGE_PROGRAM;
tx_buf[1] = (address >> ADDR_BYTE_3_BIT) & 0xFF;
tx_buf[2] = (address >> ADDR_BYTE_2_BIT) & 0xFF;
tx_buf[3] = (address >> ADDR_BYTE_1_BIT) & 0xFF;
flash_write_enable();
if (spi_write(tx_buf, sizeof(tx_buf), data, size) != 0) {
return -1;
} else {
flash_wait_busy();
}
return 0;
}

View File

@ -0,0 +1,59 @@
// Copyright (C) 2022, 2023 - Tillitis AB
// SPDX-License-Identifier: GPL-2.0-only
#ifndef TKEY_FLASH_H
#define TKEY_FLASH_H
#include <stdbool.h>
#include "../tk1/types.h"
// #include <stddef.h>
// #include <stdint.h>
#define WRITE_ENABLE 0x06
#define WRITE_DISABLE 0x04
#define READ_STATUS_REG_1 0x05
#define READ_STATUS_REG_2 0x35
#define WRITE_STATUS_REG 0x01
#define PAGE_PROGRAM 0x02
#define SECTOR_ERASE 0x20
#define BLOCK_ERASE_32K 0x52
#define BLOCK_ERASE_64K 0xD8
#define CHIP_ERASE 0xC7
#define POWER_DOWN 0xB9
#define READ_DATA 0x03
#define RELEASE_POWER_DOWN 0xAB
#define READ_MANUFACTURER_ID 0x90
#define READ_JEDEC_ID 0x9F
#define READ_UNIQUE_ID 0x4B
#define ENABLE_RESET 0x66
#define RESET 0x99
#define ADDR_BYTE_3_BIT 16
#define ADDR_BYTE_2_BIT 8
#define ADDR_BYTE_1_BIT 0
#define STATUS_REG_BUSY_BIT 0
#define STATUS_REG_WEL_BIT 1
bool flash_is_busy(void);
void flash_wait_busy(void);
void flash_write_enable(void);
void flash_write_disable(void);
void flash_sector_erase(uint32_t address);
void flash_block_32_erase(uint32_t address);
void flash_block_64_erase(uint32_t address);
void flash_release_powerdown(void);
void flash_powerdown(void);
void flash_read_manufacturer_device_id(uint8_t *device_id);
void flash_read_jedec_id(uint8_t *jedec_id);
void flash_read_unique_id(uint8_t *unique_id);
void flash_read_status(uint8_t *status_reg);
int flash_read_data(uint32_t address, uint8_t *dest_buf, size_t size);
int flash_write_data(uint32_t address, uint8_t *data, size_t size);
#endif

View File

@ -0,0 +1,171 @@
// Copyright (C) 2022, 2023 - Tillitis AB
// SPDX-License-Identifier: GPL-2.0-only
#include "../tk1/assert.h"
#include "../tk1/led.h"
#include "../tk1/lib.h"
#include "../tk1/proto.h"
#include "../tk1_mem.h"
// #include <stdbool.h>
// #include <stdint.h>
// #include <tkey/touch.h>
#include "../tk1/types.h"
#include "flash.h"
#include "spi.h"
// clang-format off
static volatile uint32_t *trng_status = (volatile uint32_t *)TK1_MMIO_TRNG_STATUS;
static volatile uint32_t *trng_entropy = (volatile uint32_t *)TK1_MMIO_TRNG_ENTROPY;
// clang-format on
static uint8_t rnd_byte(void)
{
while ((*trng_status & (1 << TK1_MMIO_TRNG_STATUS_READY_BIT)) == 0) {
}
return (*trng_entropy & 0xff);
}
//------------------------------------------------------------------
// dump_memory
// dump the complete contents of the memory
//------------------------------------------------------------------
void spi_dump_memory(void)
{
flash_release_powerdown();
uint8_t rx_buf[4096] = {0x00};
for (int block = 0; block < 0x02; block += 1) {
uint32_t address = 0x00000000;
address |= (block << ADDR_BYTE_3_BIT) & 0x00FF0000;
for (int i = 0; i < 16; i++) {
memset(rx_buf, 0x00, sizeof(rx_buf));
flash_read_data(address, rx_buf, sizeof(rx_buf));
write(rx_buf, sizeof(rx_buf));
address += 4096;
}
}
}
bool comp(uint8_t *a, uint8_t b, size_t size)
{
for (size_t i = 0; i < size; i++) {
if (a[i] != b) {
return false;
}
}
return true;
}
//------------------------------------------------------------------
// Test sequence.
// Green LED = OK, Red LED = NOK.
// It is fail fast, so any failed test gives an instant RED LED.
//
// * Check if the SPI Master exists by reading if it is ready.
// * Wait for touch to start test (blue flash).
// * Read IDs and print to serial port.
// * Erase area (address: 0x00080000).
// * Read area, compare to 0xFF.
// * Write known pattern of a random byte.
// * Read area, compare to pattern.
// * Write known pattern of a random byte to another page.
// * Read area, compare to pattern.
// * If successful, LED Green.
// * Wait for touch to dump beginning of flash (bitstream)
//* one can use for example vimdiff <(xxd output.bin) <(xxd
// application_fpga.bin)
//------------------------------------------------------------------
int main(void)
{
// Check if the SPI master exists on the hardware.
// Since this is directly in main, the SPI master should
// be ready, otherwise we can assume it does not exists in
// the FGPA.
if (!spi_ready()) {
assert(1 == 2);
}
// Wait for terminal program and a character to be typed
readbyte();
uint8_t read_buf[0xff] = {0x00};
// touch_wait(LED_BLUE, 0); // start test
flash_release_powerdown();
// Read out IDs
flash_read_manufacturer_device_id(read_buf);
write(read_buf, 2);
memset(read_buf, 0x00, sizeof(read_buf));
flash_read_unique_id(read_buf);
write(read_buf, 8);
memset(read_buf, 0x00, sizeof(read_buf));
flash_read_jedec_id(read_buf);
write(read_buf, 3);
// Erase area
uint32_t start_address = 0x00080000;
set_led(LED_RED);
flash_sector_erase(start_address); // block 8
set_led(LED_BLUE);
// Read area, compare to 0xFF
memset(read_buf, 0x00, sizeof(read_buf));
flash_read_data(start_address, read_buf, 0xff);
write(read_buf, sizeof(read_buf));
if (!comp(read_buf, 0xff, sizeof(read_buf))) {
set_led(LED_RED);
assert(1 == 2);
}
// Write a known pattern of a random byte
uint8_t write_buf[255] = {0x00};
uint8_t byte = rnd_byte();
memset(write_buf, byte, sizeof(write_buf));
flash_write_data(start_address, write_buf, sizeof(write_buf));
// Read area, compare to pattern
memset(read_buf, 0x00, sizeof(read_buf));
flash_read_data(start_address, read_buf, 0xff);
write(read_buf, sizeof(read_buf));
if (!comp(read_buf, byte, sizeof(read_buf))) {
set_led(LED_RED);
assert(1 == 2);
}
// Write a known pattern of a random byte
start_address += 0x100; // next page
byte = rnd_byte();
memset(write_buf, byte, sizeof(write_buf));
flash_write_data(start_address, write_buf, sizeof(write_buf));
// Read area, compare to pattern
memset(read_buf, 0x00, sizeof(read_buf));
flash_read_data(start_address, read_buf, 0xff);
write(read_buf, sizeof(read_buf));
if (!comp(read_buf, byte, sizeof(read_buf))) {
set_led(LED_RED);
assert(1 == 2);
}
// It this is reached, the read/writing is successful.
// touch_wait(LED_GREEN, 0); // start dump
set_led(LED_BLACK);
spi_dump_memory();
for (;;) {
set_led(LED_GREEN);
}
}

View File

@ -0,0 +1,104 @@
// Copyright (C) 2022, 2023 - Tillitis AB
// SPDX-License-Identifier: GPL-2.0-only
#include "spi.h"
// #include <stddef.h>
// #include <stdint.h>
#include "../tk1/types.h"
#include "../tk1_mem.h"
// clang-format off
static volatile uint32_t *spi_en = (volatile uint32_t *)(TK1_MMIO_TK1_BASE | 0x200);
static volatile uint32_t *spi_xfer = (volatile uint32_t *)(TK1_MMIO_TK1_BASE | 0x204);
static volatile uint32_t *spi_data = (volatile uint32_t *)(TK1_MMIO_TK1_BASE | 0x208);
// clang-format on
// returns non-zero when the SPI-master is ready, and zero if not
// ready. This can be used to check if the SPI-master is available
// in the hardware.
int spi_ready()
{
return *spi_xfer;
}
static void spi_enable()
{
*spi_en = 1;
}
static void spi_disable()
{
*spi_en = 0;
}
static void _spi_write(uint8_t *cmd, size_t size)
{
for (int i = 0; i < size; i++) {
while (!spi_ready()) {
}
*spi_data = cmd[i];
*spi_xfer = 1;
}
while (!spi_ready()) {
}
}
static void _spi_read(uint8_t *buf, size_t size)
{
while (!spi_ready()) {
}
for (int i = 0; i < size; i++) {
*spi_data = 0x00;
*spi_xfer = 1;
// wait until spi master is done
while (!spi_ready()) {
}
buf[i] = (*spi_data & 0xff);
}
}
int spi_write(uint8_t *cmd, size_t cmd_size, uint8_t *data, size_t data_size)
{
if (cmd == NULL || cmd_size == 0) {
return -1;
}
spi_enable();
_spi_write(cmd, cmd_size);
if (data != NULL && data_size != 0) {
_spi_write(data, data_size);
}
spi_disable();
return 0;
}
int spi_transfer(uint8_t *tx_buf, size_t tx_size, uint8_t *rx_buf,
size_t rx_size)
{
if (tx_buf == NULL || tx_size == 0) {
return -1;
}
spi_enable();
_spi_write(tx_buf, tx_size);
if (rx_buf != NULL && rx_size != 0) {
_spi_read(rx_buf, rx_size);
}
spi_disable();
return 0;
}

View File

@ -0,0 +1,16 @@
// Copyright (C) 2022, 2023 - Tillitis AB
// SPDX-License-Identifier: GPL-2.0-only
#ifndef TKEY_SPI_H
#define TKEY_SPI_H
// #include <stddef.h>
// #include <stdint.h>
#include "../tk1/types.h"
int spi_ready(void);
int spi_write(uint8_t *cmd, size_t size_cmd, uint8_t *data, size_t size_data);
int spi_transfer(uint8_t *tx_buf, size_t tx_size, uint8_t *rx_buf,
size_t rx_size);
#endif

View File

@ -0,0 +1,57 @@
/*
* Copyright (C) 2022, 2023 - Tillitis AB
* SPDX-License-Identifier: GPL-2.0-only
*/
.section ".text.init"
.globl _start
_start:
li x1, 0
li x2, 0
li x3, 0
li x4, 0
li x5, 0
li x6, 0
li x7, 0
li x8, 0
li x9, 0
li x10,0
li x11,0
li x12,0
li x13,0
li x14,0
li x15,0
li x16,0
li x17,0
li x18,0
li x19,0
li x20,0
li x21,0
li x22,0
li x23,0
li x24,0
li x25,0
li x26,0
li x27,0
li x28,0
li x29,0
li x30,0
li x31,0
/* Clear all RAM */
li a0, 0x40000000 // TK1_RAM_BASE
li a1, 0x40020000 // TK1_RAM_BASE + TK1_RAM_SIZE
clear:
sw zero, 0(a0)
addi a0, a0, 4
blt a0, a1, clear
/*
* For testfw we init stack at top of RAM
*/
li sp, 0x40020000 // TK1_RAM_BASE + TK1_RAM_SIZE
call main
loop:
j loop

View File

@ -21,7 +21,7 @@ static volatile uint32_t *tx = (volatile uint32_t *)TK1_MMIO_UART_TX_DATA;
static uint8_t genhdr(uint8_t id, uint8_t endpoint, uint8_t status,
enum cmdlen len);
static int parseframe(uint8_t b, struct frame_header *hdr);
static void write(uint8_t *buf, size_t nbytes);
void write(uint8_t *buf, size_t nbytes);
static int read(uint8_t *buf, size_t bufsize, size_t nbytes);
static int bytelen(enum cmdlen cmdlen);
@ -135,7 +135,7 @@ void writebyte(uint8_t b)
}
}
static void write(uint8_t *buf, size_t nbytes)
void write(uint8_t *buf, size_t nbytes)
{
for (int i = 0; i < nbytes; i++) {
writebyte(buf[i]);

View File

@ -51,6 +51,7 @@ struct frame_header {
};
/*@ -exportlocal @*/
void write(uint8_t *buf, size_t nbytes);
void writebyte(uint8_t b);
uint8_t readbyte(void);
void fwreply(struct frame_header hdr, enum fwcmd rspcode, uint8_t *buf);