USB: move firmware for usb-to-serial MCU (CH552)

Change links to the new ch552_fw directory.
This commit is contained in:
dehanj 2024-06-19 13:26:46 +02:00 committed by Michael Cardell Widerkrantz
parent c271b48a53
commit 354aecbed6
No known key found for this signature in database
GPG key ID: D3DB3DDF57E704E5
17 changed files with 3 additions and 3 deletions

View file

@ -1,9 +0,0 @@
*.asm
*.lst
*.rel
*.sym
*.rst
*.ihk
*.lk
*.mem
*.ihx

View file

@ -1,19 +0,0 @@
Copyright 2017 WCH
Device ID modifications copyright 2023 Tillitis AB
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View file

@ -1,34 +0,0 @@
TARGET = usb_device_cdc
CH554_SDCC=~/ch554_sdcc/
CHPROG=chprog
# Adjust the XRAM location and size to leave space for the USB DMA buffers
# Buffer layout in XRAM:
# 0x0000 Ep0Buffer[8]
# 0x0040 Ep1Buffer[8]
# 0x0080 EP2Buffer[2*64]
#
# This takes a total of 256bytes, so there are 768 bytes left.
XRAM_SIZE = 0x0300
XRAM_LOC = 0x0100
FREQ_SYS = 16000000
usb_strings.h: encode_usb_strings.py
./encode_usb_strings.py
C_FILES = \
main.c \
include/debug.c
pre-flash:
flash_patched: usb_device_cdc.bin
./inject_serial_number.py -i usb_device_cdc.bin -o patched.bin
${CHPROG} patched.bin
rm patched.bin
include Makefile.include

View file

@ -1,68 +0,0 @@
#######################################################
# toolchain
CC = sdcc
OBJCOPY = objcopy
PACK_HEX = packihx
WCHISP ?= wchisptool -g -f
#######################################################
FREQ_SYS ?= 24000000
XRAM_SIZE ?= 0x0400
XRAM_LOC ?= 0x0000
CODE_SIZE ?= 0x3800
ROOT_DIR := $(dir $(abspath $(lastword $(MAKEFILE_LIST))))
CFLAGS := -V -mmcs51 --model-small \
--xram-size $(XRAM_SIZE) --xram-loc $(XRAM_LOC) \
--code-size $(CODE_SIZE) \
-I$(ROOT_DIR)include -DFREQ_SYS=$(FREQ_SYS) \
$(EXTRA_FLAGS)
LFLAGS := $(CFLAGS)
RELS := $(C_FILES:.c=.rel)
print-% : ; @echo $* = $($*)
%.rel : %.c
$(CC) -c $(CFLAGS) $<
# Note: SDCC will dump all of the temporary files into this one, so strip the paths from RELS
# For now, get around this by stripping the paths off of the RELS list.
$(TARGET).ihx: $(RELS)
$(CC) $(notdir $(RELS)) $(LFLAGS) -o $(TARGET).ihx
$(TARGET).hex: $(TARGET).ihx
$(PACK_HEX) $(TARGET).ihx > $(TARGET).hex
$(TARGET).bin: $(TARGET).ihx
$(OBJCOPY) -I ihex -O binary $(TARGET).ihx $(TARGET).bin
flash: $(TARGET).bin pre-flash
$(WCHISP) $(TARGET).bin
.DEFAULT_GOAL := all
all: $(TARGET).bin $(TARGET).hex
clean:
rm -f \
$(notdir $(RELS:.rel=.asm)) \
$(notdir $(RELS:.rel=.lst)) \
$(notdir $(RELS:.rel=.mem)) \
$(notdir $(RELS:.rel=.rel)) \
$(notdir $(RELS:.rel=.rst)) \
$(notdir $(RELS:.rel=.sym)) \
$(notdir $(RELS:.rel=.adb)) \
$(TARGET).lk \
$(TARGET).map \
$(TARGET).mem \
$(TARGET).ihx \
$(TARGET).hex \
$(TARGET).bin

View file

@ -1,30 +0,0 @@
# CH552 USB-to-Serial firmware
## Toolchain setup
SDCC:
sudo apt install build-essential sdcc
chprog (for flashing the firmware to a device):
cd ~
sudo apt install libusb-1.0-0-dev
git clone https://github.com/ole00/chprog.git
cd chprog
./build_linux.sh
sudo cp chprog /usr/local/bin
## Usage
Build the firmware using a default serial number:
make
Flash the firmware to a device:
make flash_patched
## Re-programming the firmware
By design, once the USB to serial firmware is loaded onto the chip, there isn't an intended way to reflash it using only software. However, if 3.3V is applied to the D+ line through a 10K resistor during power-up, then the CH552 will enter bootloader mode, and a new firmware can be programmed onto the chip. Note that the CH552 flash is only guaranteed for a few hundred flash cycles.

View file

@ -1,56 +0,0 @@
#!/usr/bin/env python3
def descriptor_to_string(descriptor):
""" Convert a bytes object containing a USB string descriptor into a python string"""
bLength = descriptor[0]
if bLength != len(descriptor):
raise Exception('Descriptor length mismatch, length_field:{} actual_length:{}'.format(
bLength,
len(descriptor)
))
bDescriptorType = descriptor[1]
if bDescriptorType != 0x03:
raise Exception('Descriptor type mismatch, bDescriptorType:{02x} expected:0x03'.format(
bDescriptorType
))
return descriptor[2:].decode('utf-16', errors='strict')
def string_to_descriptor(string):
""" Convert a python string into a bytes object containing a USB string descriptor"""
descriptor = bytearray()
descriptor.append(0x00) # placeholder for length
descriptor.append(0x03)
descriptor.extend(string.encode('utf-16')[2:]) # crop the BOM
descriptor[0] = len(descriptor)
return bytes(descriptor)
if __name__ == "__main__":
manufacturer = 'Tillitis'
product = 'MTA1-USB-V1'
serial = "68de5d27-e223-4874-bc76-a54d6e84068f"
with open('usb_strings.h', 'w') as f:
f.write('#ifndef USB_STRINGS\n')
f.write('#define USB_STRINGS\n')
f.write('unsigned char __code Prod_Des[]={{ // "{}"\n'.format(product))
f.write(' ')
f.write(', '.join(['0x{:02x}'.format(i) for i in string_to_descriptor(product)]))
f.write('\n};\n\n')
f.write('unsigned char __code Manuf_Des[]={{ // "{}"\n'.format(manufacturer))
f.write(' ')
f.write(', '.join(['0x{:02x}'.format(i) for i in string_to_descriptor(manufacturer)]))
f.write('\n};\n\n')
f.write('unsigned char __code SerDes[]={{ // "{}"\n'.format(serial))
f.write(' ')
f.write(', '.join(['0x{:02x}'.format(i) for i in string_to_descriptor(serial)]))
f.write('\n};\n\n')
f.write('#endif\n')

View file

@ -1,752 +0,0 @@
/*--------------------------------------------------------------------------
CH554.H
Header file for CH554 microcontrollers.
****************************************
** Copyright (C) W.ch 1999-2014 **
** Web: http://wch.cn **
****************************************
--------------------------------------------------------------------------*/
#ifndef __CH554_H__
#define __CH554_H__
#include <compiler.h>
/*----- SFR --------------------------------------------------------------*/
/* sbit are bit addressable, others are byte addressable */
/* System Registers */
SFR(PSW, 0xD0); // program status word
SBIT(CY, 0xD0, 7); // carry flag
SBIT(AC, 0xD0, 6); // auxiliary carry flag
SBIT(F0, 0xD0, 5); // bit addressable general purpose flag 0
SBIT(RS1, 0xD0, 4); // register R0-R7 bank selection high bit
SBIT(RS0, 0xD0, 3); // register R0-R7 bank selection low bit
#define MASK_PSW_RS 0x18 // bit mask of register R0-R7 bank selection
// RS1 & RS0: register R0-R7 bank selection
// 00 - bank 0, R0-R7 @ address 0x00-0x07
// 01 - bank 1, R0-R7 @ address 0x08-0x0F
// 10 - bank 2, R0-R7 @ address 0x10-0x17
// 11 - bank 3, R0-R7 @ address 0x18-0x1F
SBIT(OV, 0xD0, 2); // overflow flag
SBIT(F1, 0xD0, 1); // bit addressable general purpose flag 1
SBIT(P, 0xD0, 0); // ReadOnly: parity flag
SFR(ACC, 0xE0); // accumulator
SFR(B, 0xF0); // general purpose register B
SFR(SP, 0x81); // stack pointer
//sfr16 DPTR = 0x82; // DPTR pointer, little-endian
SFR(DPL, 0x82); // data pointer low
SFR(DPH, 0x83); // data pointer high
SFR(SAFE_MOD, 0xA1); // WriteOnly: writing safe mode
//sfr CHIP_ID = 0xA1; // ReadOnly: reading chip ID
#define CHIP_ID SAFE_MOD
SFR(GLOBAL_CFG, 0xB1); // global config, Write@SafeMode
#define bBOOT_LOAD 0x20 // ReadOnly: boot loader status for discriminating BootLoader or Application: set 1 by power on reset, clear 0 by software reset
#define bSW_RESET 0x10 // software reset bit, auto clear by hardware
#define bCODE_WE 0x08 // enable flash-ROM (include code & Data-Flash) being program or erasing: 0=writing protect, 1=enable program and erase
#define bDATA_WE 0x04 // enable Data-Flash (flash-ROM data area) being program or erasing: 0=writing protect, 1=enable program and erase
#define bLDO3V3_OFF 0x02 // disable 5V->3.3V LDO: 0=enable LDO for USB and internal oscillator under 5V power, 1=disable LDO, V33 pin input external 3.3V power
#define bWDOG_EN 0x01 // enable watch-dog reset if watch-dog timer overflow: 0=as timer only, 1=enable reset if timer overflow
/* Clock and Sleep and Power Registers */
SFR(PCON, 0x87); // power control and reset flag
#define SMOD 0x80 // baud rate selection for UART0 mode 1/2/3: 0=slow(Fsys/128 @mode2, TF1/32 @mode1/3, no effect for TF2),
// 1=fast(Fsys/32 @mode2, TF1/16 @mode1/3, no effect for TF2)
#define bRST_FLAG1 0x20 // ReadOnly: recent reset flag high bit
#define bRST_FLAG0 0x10 // ReadOnly: recent reset flag low bit
#define MASK_RST_FLAG 0x30 // ReadOnly: bit mask of recent reset flag
#define RST_FLAG_SW 0x00
#define RST_FLAG_POR 0x10
#define RST_FLAG_WDOG 0x20
#define RST_FLAG_PIN 0x30
// bPC_RST_FLAG1 & bPC_RST_FLAG0: recent reset flag
// 00 - software reset, by bSW_RESET=1 @(bBOOT_LOAD=0 or bWDOG_EN=1)
// 01 - power on reset
// 10 - watch-dog timer overflow reset
// 11 - external input manual reset by RST pin
#define GF1 0x08 // general purpose flag bit 1
#define GF0 0x04 // general purpose flag bit 0
#define PD 0x02 // power-down enable bit, auto clear by wake-up hardware
SFR(CLOCK_CFG, 0xB9); // system clock config: lower 3 bits for system clock Fsys, Write@SafeMode
#define bOSC_EN_INT 0x80 // internal oscillator enable and original clock selection: 1=enable & select internal clock, 0=disable & select external clock
#define bOSC_EN_XT 0x40 // external oscillator enable, need quartz crystal or ceramic resonator between XI and XO pins
#define bWDOG_IF_TO 0x20 // ReadOnly: watch-dog timer overflow interrupt flag, cleared by reload watch-dog count or auto cleared when MCU enter interrupt routine
#define bROM_CLK_FAST 0x10 // flash-ROM clock frequency selection: 0=normal(for Fosc>=16MHz), 1=fast(for Fosc<16MHz)
#define bRST 0x08 // ReadOnly: pin RST input
#define bT2EX_ 0x08 // alternate pin for T2EX
#define bCAP2_ 0x08 // alternate pin for CAP2
#define MASK_SYS_CK_SEL 0x07 // bit mask of system clock Fsys selection
/*
Fxt = 24MHz(8MHz~25MHz for non-USB application), from external oscillator @XI&XO
Fosc = bOSC_EN_INT ? 24MHz : Fxt
Fpll = Fosc * 4 => 96MHz (32MHz~100MHz for non-USB application)
Fusb4x = Fpll / 2 => 48MHz (Fixed)
MASK_SYS_CK_SEL[2] [1] [0]
Fsys = Fpll/3 = 32MHz: 1 1 1
Fsys = Fpll/4 = 24MHz: 1 1 0
Fsys = Fpll/6 = 16MHz: 1 0 1
Fsys = Fpll/8 = 12MHz: 1 0 0
Fsys = Fpll/16 = 6MHz: 0 1 1
Fsys = Fpll/32 = 3MHz: 0 1 0
Fsys = Fpll/128 = 750KHz: 0 0 1
Fsys = Fpll/512 =187.5KHz: 0 0 0
*/
SFR(WAKE_CTRL, 0xA9); // wake-up control, Write@SafeMode
#define bWAK_BY_USB 0x80 // enable wake-up by USB event
#define bWAK_RXD1_LO 0x40 // enable wake-up by RXD1 low level
#define bWAK_P1_5_LO 0x20 // enable wake-up by pin P1.5 low level
#define bWAK_P1_4_LO 0x10 // enable wake-up by pin P1.4 low level
#define bWAK_P1_3_LO 0x08 // enable wake-up by pin P1.3 low level
#define bWAK_RST_HI 0x04 // enable wake-up by pin RST high level
#define bWAK_P3_2E_3L 0x02 // enable wake-up by pin P3.2 (INT0) edge or pin P3.3 (INT1) low level
#define bWAK_RXD0_LO 0x01 // enable wake-up by RXD0 low level
SFR(RESET_KEEP, 0xFE); // value keeper during reset
SFR(WDOG_COUNT, 0xFF); // watch-dog count, count by clock frequency Fsys/65536
/* Interrupt Registers */
SFR(IE, 0xA8); // interrupt enable
SBIT(EA, 0xA8, 7); // enable global interrupts: 0=disable, 1=enable if E_DIS=0
SBIT(E_DIS, 0xA8, 6); // disable global interrupts, intend to inhibit interrupt during some flash-ROM operation: 0=enable if EA=1, 1=disable
SBIT(ET2, 0xA8, 5); // enable timer2 interrupt
SBIT(ES, 0xA8, 4); // enable UART0 interrupt
SBIT(ET1, 0xA8, 3); // enable timer1 interrupt
SBIT(EX1, 0xA8, 2); // enable external interrupt INT1
SBIT(ET0, 0xA8, 1); // enable timer0 interrupt
SBIT(EX0, 0xA8, 0); // enable external interrupt INT0
SFR(IP, 0xB8); // interrupt priority and current priority
SBIT(PH_FLAG, 0xB8, 7); // ReadOnly: high level priority action flag
SBIT(PL_FLAG, 0xB8, 6); // ReadOnly: low level priority action flag
// PH_FLAG & PL_FLAG: current interrupt priority
// 00 - no interrupt now
// 01 - low level priority interrupt action now
// 10 - high level priority interrupt action now
// 11 - unknown error
SBIT(PT2, 0xB8, 5); // timer2 interrupt priority level
SBIT(PS, 0xB8, 4); // UART0 interrupt priority level
SBIT(PT1, 0xB8, 3); // timer1 interrupt priority level
SBIT(PX1, 0xB8, 2); // external interrupt INT1 priority level
SBIT(PT0, 0xB8, 1); // timer0 interrupt priority level
SBIT(PX0, 0xB8, 0); // external interrupt INT0 priority level
SFR(IE_EX, 0xE8); // extend interrupt enable
SBIT(IE_WDOG, 0xE8, 7); // enable watch-dog timer interrupt
SBIT(IE_GPIO, 0xE8, 6); // enable GPIO input interrupt
SBIT(IE_PWMX, 0xE8, 5); // enable PWM1/2 interrupt
SBIT(IE_UART1, 0xE8, 4); // enable UART1 interrupt
SBIT(IE_ADC, 0xE8, 3); // enable ADC interrupt
SBIT(IE_USB, 0xE8, 2); // enable USB interrupt
SBIT(IE_TKEY, 0xE8, 1); // enable touch-key timer interrupt
SBIT(IE_SPI0, 0xE8, 0); // enable SPI0 interrupt
SFR(IP_EX, 0xE9); // extend interrupt priority
#define bIP_LEVEL 0x80 // ReadOnly: current interrupt nested level: 0=no interrupt or two levels, 1=one level
#define bIP_GPIO 0x40 // GPIO input interrupt priority level
#define bIP_PWMX 0x20 // PWM1/2 interrupt priority level
#define bIP_UART1 0x10 // UART1 interrupt priority level
#define bIP_ADC 0x08 // ADC interrupt priority level
#define bIP_USB 0x04 // USB interrupt priority level
#define bIP_TKEY 0x02 // touch-key timer interrupt priority level
#define bIP_SPI0 0x01 // SPI0 interrupt priority level
SFR(GPIO_IE, 0xC7); // GPIO interrupt enable
#define bIE_IO_EDGE 0x80 // enable GPIO edge interrupt: 0=low/high level, 1=falling/rising edge
#define bIE_RXD1_LO 0x40 // enable interrupt by RXD1 low level / falling edge
#define bIE_P1_5_LO 0x20 // enable interrupt by pin P1.5 low level / falling edge
#define bIE_P1_4_LO 0x10 // enable interrupt by pin P1.4 low level / falling edge
#define bIE_P1_3_LO 0x08 // enable interrupt by pin P1.3 low level / falling edge
#define bIE_RST_HI 0x04 // enable interrupt by pin RST high level / rising edge
#define bIE_P3_1_LO 0x02 // enable interrupt by pin P3.1 low level / falling edge
#define bIE_RXD0_LO 0x01 // enable interrupt by RXD0 low level / falling edge
/* FlashROM and Data-Flash Registers */
SFR16(ROM_ADDR, 0x84); // address for flash-ROM, little-endian
SFR(ROM_ADDR_L, 0x84); // address low byte for flash-ROM
SFR(ROM_ADDR_H, 0x85); // address high byte for flash-ROM
SFR16(ROM_DATA, 0x8E); // data for flash-ROM writing, little-endian
SFR(ROM_DATA_L, 0x8E); // data low byte for flash-ROM writing, data byte for Data-Flash reading/writing
SFR(ROM_DATA_H, 0x8F); // data high byte for flash-ROM writing
SFR(ROM_CTRL, 0x86); // WriteOnly: flash-ROM control
#define ROM_CMD_WRITE 0x9A // WriteOnly: flash-ROM word or Data-Flash byte write operation command
#define ROM_CMD_READ 0x8E // WriteOnly: Data-Flash byte read operation command
//sfr ROM_STATUS = 0x86; // ReadOnly: flash-ROM status
#define ROM_STATUS ROM_CTRL
#define bROM_ADDR_OK 0x40 // ReadOnly: flash-ROM writing operation address valid flag, can be reviewed before or after operation: 0=invalid parameter, 1=address valid
#define bROM_CMD_ERR 0x02 // ReadOnly: flash-ROM operation command error flag: 0=command accepted, 1=unknown command
/* Port Registers */
SFR(P1, 0x90); // port 1 input & output
SBIT(SCK, 0x90, 7); // serial clock for SPI0
SBIT(TXD1, 0x90, 7); // TXD output for UART1
SBIT(TIN5, 0x90, 7); // TIN5 for Touch-Key
SBIT(MISO, 0x90, 6); // master serial data input or slave serial data output for SPI0
SBIT(RXD1, 0x90, 6); // RXD input for UART1
SBIT(TIN4, 0x90, 6); // TIN4 for Touch-Key
SBIT(MOSI, 0x90, 5); // master serial data output or slave serial data input for SPI0
SBIT(PWM1, 0x90, 5); // PWM output for PWM1
SBIT(TIN3, 0x90, 5); // TIN3 for Touch-Key
SBIT(UCC2, 0x90, 5); // CC2 for USB type-C
SBIT(AIN2, 0x90, 5); // AIN2 for ADC
SBIT(T2_, 0x90, 4); // alternate pin for T2
SBIT(CAP1_, 0x90, 4); // alternate pin for CAP1
SBIT(SCS, 0x90, 4); // slave chip-selection input for SPI0
SBIT(TIN2, 0x90, 4); // TIN2 for Touch-Key
SBIT(UCC1, 0x90, 4); // CC1 for USB type-C
SBIT(AIN1, 0x90, 4); // AIN1 for ADC
SBIT(TXD_, 0x90, 3); // alternate pin for TXD of UART0
SBIT(RXD_, 0x90, 2); // alternate pin for RXD of UART0
SBIT(T2EX, 0x90, 1); // external trigger input for timer2 reload & capture
SBIT(CAP2, 0x90, 1); // capture2 input for timer2
SBIT(TIN1, 0x90, 1); // TIN1 for Touch-Key
SBIT(VBUS2, 0x90, 1); // VBUS2 for USB type-C
SBIT(AIN0, 0x90, 1); // AIN0 for ADC
SBIT(T2, 0x90, 0); // external count input
SBIT(CAP1, 0x90, 0); // capture1 input for timer2
SBIT(TIN0, 0x90, 0); // TIN0 for Touch-Key
SFR(P1_MOD_OC, 0x92); // port 1 output mode: 0=push-pull, 1=open-drain
SFR(P1_DIR_PU, 0x93); // port 1 direction for push-pull or pullup enable for open-drain
// Pn_MOD_OC & Pn_DIR_PU: pin input & output configuration for Pn (n=1/3)
// 0 0: float input only, without pullup resistance
// 0 1: push-pull output, strong driving high level and low level
// 1 0: open-drain output and input without pullup resistance
// 1 1: quasi-bidirectional (standard 8051 mode), open-drain output and input with pullup resistance, just driving high level strongly for 2 clocks if turning output level from low to high
#define bSCK 0x80 // serial clock for SPI0
#define bTXD1 0x80 // TXD output for UART1
#define bMISO 0x40 // master serial data input or slave serial data output for SPI0
#define bRXD1 0x40 // RXD input for UART1
#define bMOSI 0x20 // master serial data output or slave serial data input for SPI0
#define bPWM1 0x20 // PWM output for PWM1
#define bUCC2 0x20 // CC2 for USB type-C
#define bAIN2 0x20 // AIN2 for ADC
#define bT2_ 0x10 // alternate pin for T2
#define bCAP1_ 0x10 // alternate pin for CAP1
#define bSCS 0x10 // slave chip-selection input for SPI0
#define bUCC1 0x10 // CC1 for USB type-C
#define bAIN1 0x10 // AIN1 for ADC
#define bTXD_ 0x08 // alternate pin for TXD of UART0
#define bRXD_ 0x04 // alternate pin for RXD of UART0
#define bT2EX 0x02 // external trigger input for timer2 reload & capture
#define bCAP2 bT2EX // capture2 input for timer2
#define bVBUS2 0x02 // VBUS2 for USB type-C
#define bAIN0 0x02 // AIN0 for ADC
#define bT2 0x01 // external count input or clock output for timer2
#define bCAP1 bT2 // capture1 input for timer2
SFR(P2, 0xA0); // port 2
SFR(P3, 0xB0); // port 3 input & output
SBIT(UDM, 0xB0, 7); // ReadOnly: pin UDM input
SBIT(UDP, 0xB0, 6); // ReadOnly: pin UDP input
SBIT(T1, 0xB0, 5); // external count input for timer1
SBIT(PWM2, 0xB0, 4); // PWM output for PWM2
SBIT(RXD1_, 0xB0, 4); // alternate pin for RXD1
SBIT(T0, 0xB0, 4); // external count input for timer0
SBIT(INT1, 0xB0, 3); // external interrupt 1 input
SBIT(TXD1_, 0xB0, 2); // alternate pin for TXD1
SBIT(INT0, 0xB0, 2); // external interrupt 0 input
SBIT(VBUS1, 0xB0, 2); // VBUS1 for USB type-C
SBIT(AIN3, 0xB0, 2); // AIN3 for ADC
SBIT(PWM2_, 0xB0, 1); // alternate pin for PWM2
SBIT(TXD, 0xB0, 1); // TXD output for UART0
SBIT(PWM1_, 0xB0, 0); // alternate pin for PWM1
SBIT(RXD, 0xB0, 0); // RXD input for UART0
SFR(P3_MOD_OC, 0x96); // port 3 output mode: 0=push-pull, 1=open-drain
SFR(P3_DIR_PU, 0x97); // port 3 direction for push-pull or pullup enable for open-drain
#define bUDM 0x80 // ReadOnly: pin UDM input
#define bUDP 0x40 // ReadOnly: pin UDP input
#define bT1 0x20 // external count input for timer1
#define bPWM2 0x10 // PWM output for PWM2
#define bRXD1_ 0x10 // alternate pin for RXD1
#define bT0 0x10 // external count input for timer0
#define bINT1 0x08 // external interrupt 1 input
#define bTXD1_ 0x04 // alternate pin for TXD1
#define bINT0 0x04 // external interrupt 0 input
#define bVBUS1 0x04 // VBUS1 for USB type-C
#define bAIN3 0x04 // AIN3 for ADC
#define bPWM2_ 0x02 // alternate pin for PWM2
#define bTXD 0x02 // TXD output for UART0
#define bPWM1_ 0x01 // alternate pin for PWM1
#define bRXD 0x01 // RXD input for UART0
SFR(PIN_FUNC, 0xC6); // pin function selection
#define bUSB_IO_EN 0x80 // USB UDP/UDM I/O pin enable: 0=P3.6/P3.7 as GPIO, 1=P3.6/P3.7 as USB
#define bIO_INT_ACT 0x40 // ReadOnly: GPIO interrupt request action status
#define bUART1_PIN_X 0x20 // UART1 alternate pin enable: 0=RXD1/TXD1 on P1.6/P1.7, 1=RXD1/TXD1 on P3.4/P3.2
#define bUART0_PIN_X 0x10 // UART0 alternate pin enable: 0=RXD0/TXD0 on P3.0/P3.1, 1=RXD0/TXD0 on P1.2/P1.3
#define bPWM2_PIN_X 0x08 // PWM2 alternate pin enable: 0=PWM2 on P3.4, 1=PWM2 on P3.1
#define bPWM1_PIN_X 0x04 // PWM1 alternate pin enable: 0=PWM1 on P1.5, 1=PWM1 on P3.0
#define bT2EX_PIN_X 0x02 // T2EX/CAP2 alternate pin enable: 0=T2EX/CAP2 on P1.1, 1=T2EX/CAP2 on RST
#define bT2_PIN_X 0x01 // T2/CAP1 alternate pin enable: 0=T2/CAP1 on P1.1, 1=T2/CAP1 on P1.4
SFR(XBUS_AUX, 0xA2); // xBUS auxiliary setting
#define bUART0_TX 0x80 // ReadOnly: indicate UART0 transmittal status
#define bUART0_RX 0x40 // ReadOnly: indicate UART0 receiving status
#define bSAFE_MOD_ACT 0x20 // ReadOnly: safe mode action status
#define GF2 0x08 // general purpose flag bit 2
#define bDPTR_AUTO_INC 0x04 // enable DPTR auto increase if finished MOVX_@DPTR instruction
#define DPS 0x01 // dual DPTR selection: 0=DPTR0 selected, 1=DPTR1 selected
/* Timer0/1 Registers */
SFR(TCON, 0x88); // timer 0/1 control and external interrupt control
SBIT(TF1, 0x88, 7); // timer1 overflow & interrupt flag, auto cleared when MCU enter interrupt routine
SBIT(TR1, 0x88, 6); // timer1 run enable
SBIT(TF0, 0x88, 5); // timer0 overflow & interrupt flag, auto cleared when MCU enter interrupt routine
SBIT(TR0, 0x88, 4); // timer0 run enable
SBIT(IE1, 0x88, 3); // INT1 interrupt flag, auto cleared when MCU enter interrupt routine
SBIT(IT1, 0x88, 2); // INT1 interrupt type: 0=low level action, 1=falling edge action
SBIT(IE0, 0x88, 1); // INT0 interrupt flag, auto cleared when MCU enter interrupt routine
SBIT(IT0, 0x88, 0); // INT0 interrupt type: 0=low level action, 1=falling edge action
SFR(TMOD, 0x89); // timer 0/1 mode
#define bT1_GATE 0x80 // gate control of timer1: 0=timer1 run enable while TR1=1, 1=timer1 run enable while P3.3 (INT1) pin is high and TR1=1
#define bT1_CT 0x40 // counter or timer mode selection for timer1: 0=timer, use internal clock, 1=counter, use P3.5 (T1) pin falling edge as clock
#define bT1_M1 0x20 // timer1 mode high bit
#define bT1_M0 0x10 // timer1 mode low bit
#define MASK_T1_MOD 0x30 // bit mask of timer1 mode
// bT1_M1 & bT1_M0: timer1 mode
// 00: mode 0, 13-bit timer or counter by cascaded TH1 and lower 5 bits of TL1, the upper 3 bits of TL1 are ignored
// 01: mode 1, 16-bit timer or counter by cascaded TH1 and TL1
// 10: mode 2, TL1 operates as 8-bit timer or counter, and TH1 provide initial value for TL1 auto-reload
// 11: mode 3, stop timer1
#define bT0_GATE 0x08 // gate control of timer0: 0=timer0 run enable while TR0=1, 1=timer0 run enable while P3.2 (INT0) pin is high and TR0=1
#define bT0_CT 0x04 // counter or timer mode selection for timer0: 0=timer, use internal clock, 1=counter, use P3.4 (T0) pin falling edge as clock
#define bT0_M1 0x02 // timer0 mode high bit
#define bT0_M0 0x01 // timer0 mode low bit
#define MASK_T0_MOD 0x03 // bit mask of timer0 mode
// bT0_M1 & bT0_M0: timer0 mode
// 00: mode 0, 13-bit timer or counter by cascaded TH0 and lower 5 bits of TL0, the upper 3 bits of TL0 are ignored
// 01: mode 1, 16-bit timer or counter by cascaded TH0 and TL0
// 10: mode 2, TL0 operates as 8-bit timer or counter, and TH0 provide initial value for TL0 auto-reload
// 11: mode 3, TL0 is 8-bit timer or counter controlled by standard timer0 bits, TH0 is 8-bit timer using TF1 and controlled by TR1, timer1 run enable if it is not mode 3
SFR(TL0, 0x8A); // low byte of timer 0 count
SFR(TL1, 0x8B); // low byte of timer 1 count
SFR(TH0, 0x8C); // high byte of timer 0 count
SFR(TH1, 0x8D); // high byte of timer 1 count
/* UART0 Registers */
SFR(SCON, 0x98); // UART0 control (serial port control)
SBIT(SM0, 0x98, 7); // UART0 mode bit0, selection data bit: 0=8 bits data, 1=9 bits data
SBIT(SM1, 0x98, 6); // UART0 mode bit1, selection baud rate: 0=fixed, 1=variable
// SM0 & SM1: UART0 mode
// 00 - mode 0, shift Register, baud rate fixed at: Fsys/12
// 01 - mode 1, 8-bit UART, baud rate = variable by timer1 or timer2 overflow rate
// 10 - mode 2, 9-bit UART, baud rate fixed at: Fsys/128@SMOD=0, Fsys/32@SMOD=1
// 11 - mode 3, 9-bit UART, baud rate = variable by timer1 or timer2 overflow rate
SBIT(SM2, 0x98, 5); // enable multi-device communication in mode 2/3
#define MASK_UART0_MOD 0xE0 // bit mask of UART0 mode
SBIT(REN, 0x98, 4); // enable UART0 receiving
SBIT(TB8, 0x98, 3); // the 9th transmitted data bit in mode 2/3
SBIT(RB8, 0x98, 2); // 9th data bit received in mode 2/3, or stop bit received for mode 1
SBIT(TI, 0x98, 1); // transmit interrupt flag, set by hardware after completion of a serial transmittal, need software clear
SBIT(RI, 0x98, 0); // receive interrupt flag, set by hardware after completion of a serial receiving, need software clear
SFR(SBUF, 0x99); // UART0 data buffer: reading for receiving, writing for transmittal
/* Timer2/Capture2 Registers */
SFR(T2CON, 0xC8); // timer 2 control
SBIT(TF2, 0xC8, 7); // timer2 overflow & interrupt flag, need software clear, the flag will not be set when either RCLK=1 or TCLK=1
SBIT(CAP1F, 0xC8, 7); // timer2 capture 1 interrupt flag, set by T2 edge trigger if bT2_CAP1_EN=1, need software clear
SBIT(EXF2, 0xC8, 6); // timer2 external flag, set by T2EX edge trigger if EXEN2=1, need software clear
SBIT(RCLK, 0xC8, 5); // selection UART0 receiving clock: 0=timer1 overflow pulse, 1=timer2 overflow pulse
SBIT(TCLK, 0xC8, 4); // selection UART0 transmittal clock: 0=timer1 overflow pulse, 1=timer2 overflow pulse
SBIT(EXEN2, 0xC8, 3); // enable T2EX trigger function: 0=ignore T2EX, 1=trigger reload or capture by T2EX edge
SBIT(TR2, 0xC8, 2); // timer2 run enable
SBIT(C_T2, 0xC8, 1); // timer2 clock source selection: 0=timer base internal clock, 1=external edge counter base T2 falling edge
SBIT(CP_RL2, 0xC8, 0); // timer2 function selection (force 0 if RCLK=1 or TCLK=1): 0=timer and auto reload if count overflow or T2EX edge, 1=capture by T2EX edge
SFR(T2MOD, 0xC9); // timer 2 mode and timer 0/1/2 clock mode
#define bTMR_CLK 0x80 // fastest internal clock mode for timer 0/1/2 under faster clock mode: 0=use divided clock, 1=use original Fsys as clock without dividing
#define bT2_CLK 0x40 // timer2 internal clock frequency selection: 0=standard clock, Fsys/12 for timer mode, Fsys/4 for UART0 clock mode,
// 1=faster clock, Fsys/4 @bTMR_CLK=0 or Fsys @bTMR_CLK=1 for timer mode, Fsys/2 @bTMR_CLK=0 or Fsys @bTMR_CLK=1 for UART0 clock mode
#define bT1_CLK 0x20 // timer1 internal clock frequency selection: 0=standard clock, Fsys/12, 1=faster clock, Fsys/4 if bTMR_CLK=0 or Fsys if bTMR_CLK=1
#define bT0_CLK 0x10 // timer0 internal clock frequency selection: 0=standard clock, Fsys/12, 1=faster clock, Fsys/4 if bTMR_CLK=0 or Fsys if bTMR_CLK=1
#define bT2_CAP_M1 0x08 // timer2 capture mode high bit
#define bT2_CAP_M0 0x04 // timer2 capture mode low bit
// bT2_CAP_M1 & bT2_CAP_M0: timer2 capture point selection
// x0: from falling edge to falling edge
// 01: from any edge to any edge (level changing)
// 11: from rising edge to rising edge
#define T2OE 0x02 // enable timer2 generated clock output: 0=disable output, 1=enable clock output at T2 pin, frequency = TF2/2
#define bT2_CAP1_EN 0x01 // enable T2 trigger function for capture 1 of timer2 if RCLK=0 & TCLK=0 & CP_RL2=1 & C_T2=0 & T2OE=0
SFR16(RCAP2, 0xCA); // reload & capture value, little-endian
SFR(RCAP2L, 0xCA); // low byte of reload & capture value
SFR(RCAP2H, 0xCB); // high byte of reload & capture value
SFR16(T2COUNT, 0xCC); // counter, little-endian
SFR(TL2, 0xCC); // low byte of timer 2 count
SFR(TH2, 0xCD); // high byte of timer 2 count
SFR16(T2CAP1, 0xCE); // ReadOnly: capture 1 value for timer2
SFR(T2CAP1L, 0xCE); // ReadOnly: capture 1 value low byte for timer2
SFR(T2CAP1H, 0xCF); // ReadOnly: capture 1 value high byte for timer2
/* PWM1/2 Registers */
SFR(PWM_DATA2, 0x9B); // PWM data for PWM2
SFR(PWM_DATA1, 0x9C); // PWM data for PWM1
SFR(PWM_CTRL, 0x9D); // PWM 1/2 control
#define bPWM_IE_END 0x80 // enable interrupt for PWM mode cycle end
#define bPWM2_POLAR 0x40 // PWM2 output polarity: 0=default low and high action, 1=default high and low action
#define bPWM1_POLAR 0x20 // PWM1 output polarity: 0=default low and high action, 1=default high and low action
#define bPWM_IF_END 0x10 // interrupt flag for cycle end, write 1 to clear or write PWM_CYCLE or load new data to clear
#define bPWM2_OUT_EN 0x08 // PWM2 output enable
#define bPWM1_OUT_EN 0x04 // PWM1 output enable
#define bPWM_CLR_ALL 0x02 // force clear FIFO and count of PWM1/2
SFR(PWM_CK_SE, 0x9E); // clock divisor setting
/* SPI0/Master0/Slave Registers */
SFR(SPI0_STAT, 0xF8); // SPI 0 status
SBIT(S0_FST_ACT, 0xF8, 7); // ReadOnly: indicate first byte received status for SPI0
SBIT(S0_IF_OV, 0xF8, 6); // interrupt flag for slave mode FIFO overflow, direct bit address clear or write 1 to clear
SBIT(S0_IF_FIRST, 0xF8, 5); // interrupt flag for first byte received, direct bit address clear or write 1 to clear
SBIT(S0_IF_BYTE, 0xF8, 4); // interrupt flag for a byte data exchanged, direct bit address clear or write 1 to clear or accessing FIFO to clear if bS0_AUTO_IF=1
SBIT(S0_FREE, 0xF8, 3); // ReadOnly: SPI0 free status
SBIT(S0_T_FIFO, 0xF8, 2); // ReadOnly: tx FIFO count for SPI0
SBIT(S0_R_FIFO, 0xF8, 0); // ReadOnly: rx FIFO count for SPI0
SFR(SPI0_DATA, 0xF9); // FIFO data port: reading for receiving, writing for transmittal
SFR(SPI0_CTRL, 0xFA); // SPI 0 control
#define bS0_MISO_OE 0x80 // SPI0 MISO output enable
#define bS0_MOSI_OE 0x40 // SPI0 MOSI output enable
#define bS0_SCK_OE 0x20 // SPI0 SCK output enable
#define bS0_DATA_DIR 0x10 // SPI0 data direction: 0=out(master_write), 1=in(master_read)
#define bS0_MST_CLK 0x08 // SPI0 master clock mode: 0=mode 0 with default low, 1=mode 3 with default high
#define bS0_2_WIRE 0x04 // enable SPI0 two wire mode: 0=3 wire (SCK+MOSI+MISO), 1=2 wire (SCK+MISO)
#define bS0_CLR_ALL 0x02 // force clear FIFO and count of SPI0
#define bS0_AUTO_IF 0x01 // enable FIFO accessing to auto clear S0_IF_BYTE interrupt flag
SFR(SPI0_CK_SE, 0xFB); // clock divisor setting
//sfr SPI0_S_PRE = 0xFB; // preset value for SPI slave
#define SPI0_S_PRE SPI0_CK_SE
SFR(SPI0_SETUP, 0xFC); // SPI 0 setup
#define bS0_MODE_SLV 0x80 // SPI0 slave mode: 0=master, 1=slave
#define bS0_IE_FIFO_OV 0x40 // enable interrupt for slave mode FIFO overflow
#define bS0_IE_FIRST 0x20 // enable interrupt for first byte received for SPI0 slave mode
#define bS0_IE_BYTE 0x10 // enable interrupt for a byte received
#define bS0_BIT_ORDER 0x08 // SPI0 bit data order: 0=MSB first, 1=LSB first
#define bS0_SLV_SELT 0x02 // ReadOnly: SPI0 slave mode chip selected status: 0=unselected, 1=selected
#define bS0_SLV_PRELOAD 0x01 // ReadOnly: SPI0 slave mode data pre-loading status just after chip-selection
/* UART1 Registers */
SFR(SCON1, 0xC0); // UART1 control (serial port control)
SBIT(U1SM0, 0xC0, 7); // UART1 mode, selection data bit: 0=8 bits data, 1=9 bits data
SBIT(U1SMOD, 0xC0, 5); // UART1 2X baud rate selection: 0=slow(Fsys/32/(256-SBAUD1)), 1=fast(Fsys/16/(256-SBAUD1))
SBIT(U1REN, 0xC0, 4); // enable UART1 receiving
SBIT(U1TB8, 0xC0, 3); // the 9th transmitted data bit in 9 bits data mode
SBIT(U1RB8, 0xC0, 2); // 9th data bit received in 9 bits data mode, or stop bit received for 8 bits data mode
SBIT(U1TI, 0xC0, 1); // transmit interrupt flag, set by hardware after completion of a serial transmittal, need software clear
SBIT(U1RI, 0xC0, 0); // receive interrupt flag, set by hardware after completion of a serial receiving, need software clear
SFR(SBUF1, 0xC1); // UART1 data buffer: reading for receiving, writing for transmittal
SFR(SBAUD1, 0xC2); // UART1 baud rate setting
/* ADC and comparator Registers */
SFR(ADC_CTRL, 0x80); // ADC control
SBIT(CMPO, 0x80, 7); // ReadOnly: comparator result input
SBIT(CMP_IF, 0x80, 6); // flag for comparator result changed, direct bit address clear
SBIT(ADC_IF, 0x80, 5); // interrupt flag for ADC finished, direct bit address clear
SBIT(ADC_START, 0x80, 4); // set 1 to start ADC, auto cleared when ADC finished
SBIT(CMP_CHAN, 0x80, 3); // comparator IN- input channel selection: 0=AIN1, 1=AIN3
SBIT(ADC_CHAN1, 0x80, 1); // ADC/comparator IN+ channel selection high bit
SBIT(ADC_CHAN0, 0x80, 0); // ADC/comparator IN+ channel selection low bit
// ADC_CHAN1 & ADC_CHAN0: ADC/comparator IN+ channel selection
// 00: AIN0(P1.1)
// 01: AIN1(P1.4)
// 10: AIN2(P1.5)
// 11: AIN3(P3.2)
SFR(ADC_CFG, 0x9A); // ADC config
#define bADC_EN 0x08 // control ADC power: 0=shut down ADC, 1=enable power for ADC
#define bCMP_EN 0x04 // control comparator power: 0=shut down comparator, 1=enable power for comparator
#define bADC_CLK 0x01 // ADC clock frequency selection: 0=slow clock, 384 Fosc cycles for each ADC, 1=fast clock, 96 Fosc cycles for each ADC
SFR(ADC_DATA, 0x9F); // ReadOnly: ADC data
/* Touch-key timer Registers */
SFR(TKEY_CTRL, 0xC3); // touch-key control
#define bTKC_IF 0x80 // ReadOnly: interrupt flag for touch-key timer, cleared by writing touch-key control or auto cleared when start touch-key checking
#define bTKC_2MS 0x10 // touch-key timer cycle selection: 0=1mS, 1=2mS
#define bTKC_CHAN2 0x04 // touch-key channel selection high bit
#define bTKC_CHAN1 0x02 // touch-key channel selection middle bit
#define bTKC_CHAN0 0x01 // touch-key channel selection low bit
// bTKC_CHAN2 & bTKC_CHAN1 & bTKC_CHAN0: touch-key channel selection
// 000: disable touch-key
// 001: TIN0(P1.0)
// 010: TIN1(P1.1)
// 011: TIN2(P1.4)
// 100: TIN3(P1.5)
// 101: TIN4(P1.6)
// 110: TIN5(P1.7)
// 111: enable touch-key but disable all channel
SFR16(TKEY_DAT, 0xC4); // ReadOnly: touch-key data, little-endian
SFR(TKEY_DATL, 0xC4); // ReadOnly: low byte of touch-key data
SFR(TKEY_DATH, 0xC5); // ReadOnly: high byte of touch-key data
#define bTKD_CHG 0x80 // ReadOnly: indicate control changed, current data maybe invalid
/* USB/Host/Device Registers */
SFR(USB_C_CTRL, 0x91); // USB type-C control
#define bVBUS2_PD_EN 0x80 // USB VBUS2 10K pulldown resistance: 0=disable, 1=enable pullup
#define bUCC2_PD_EN 0x40 // USB CC2 5.1K pulldown resistance: 0=disable, 1=enable pulldown
#define bUCC2_PU1_EN 0x20 // USB CC2 pullup resistance control high bit
#define bUCC2_PU0_EN 0x10 // USB CC2 pullup resistance control low bit
#define bVBUS1_PD_EN 0x08 // USB VBUS1 10K pulldown resistance: 0=disable, 1=enable pullup
#define bUCC1_PD_EN 0x04 // USB CC1 5.1K pulldown resistance: 0=disable, 1=enable pulldown
#define bUCC1_PU1_EN 0x02 // USB CC1 pullup resistance control high bit
#define bUCC1_PU0_EN 0x01 // USB CC1 pullup resistance control low bit
// bUCC?_PU1_EN & bUCC?_PU0_EN: USB CC pullup resistance selection
// 00: disable pullup resistance
// 01: enable 56K pullup resistance for default USB power
// 10: enable 22K pullup resistance for 1.5A USB power
// 11: enable 10K pullup resistance for 3A USB power
SFR(UDEV_CTRL, 0xD1); // USB device physical port control
#define bUD_PD_DIS 0x80 // disable USB UDP/UDM pulldown resistance: 0=enable pulldown, 1=disable
#define bUD_DP_PIN 0x20 // ReadOnly: indicate current UDP pin level
#define bUD_DM_PIN 0x10 // ReadOnly: indicate current UDM pin level
#define bUD_LOW_SPEED 0x04 // enable USB physical port low speed: 0=full speed, 1=low speed
#define bUD_GP_BIT 0x02 // general purpose bit
#define bUD_PORT_EN 0x01 // enable USB physical port I/O: 0=disable, 1=enable
//sfr UHOST_CTRL = 0xD1; // USB host physical port control
#define UHOST_CTRL UDEV_CTRL
#define bUH_PD_DIS 0x80 // disable USB UDP/UDM pulldown resistance: 0=enable pulldown, 1=disable
#define bUH_DP_PIN 0x20 // ReadOnly: indicate current UDP pin level
#define bUH_DM_PIN 0x10 // ReadOnly: indicate current UDM pin level
#define bUH_LOW_SPEED 0x04 // enable USB port low speed: 0=full speed, 1=low speed
#define bUH_BUS_RESET 0x02 // control USB bus reset: 0=normal, 1=force bus reset
#define bUH_PORT_EN 0x01 // enable USB port: 0=disable, 1=enable port, automatic disabled if USB device detached
SFR(UEP1_CTRL, 0xD2); // endpoint 1 control
#define bUEP_R_TOG 0x80 // expected data toggle flag of USB endpoint X receiving (OUT): 0=DATA0, 1=DATA1
#define bUEP_T_TOG 0x40 // prepared data toggle flag of USB endpoint X transmittal (IN): 0=DATA0, 1=DATA1
#define bUEP_AUTO_TOG 0x10 // enable automatic toggle after successful transfer completion on endpoint 1/2/3: 0=manual toggle, 1=automatic toggle
#define bUEP_R_RES1 0x08 // handshake response type high bit for USB endpoint X receiving (OUT)
#define bUEP_R_RES0 0x04 // handshake response type low bit for USB endpoint X receiving (OUT)
#define MASK_UEP_R_RES 0x0C // bit mask of handshake response type for USB endpoint X receiving (OUT)
#define UEP_R_RES_ACK 0x00
#define UEP_R_RES_TOUT 0x04
#define UEP_R_RES_NAK 0x08
#define UEP_R_RES_STALL 0x0C
// bUEP_R_RES1 & bUEP_R_RES0: handshake response type for USB endpoint X receiving (OUT)
// 00: ACK (ready)
// 01: no response, time out to host, for non-zero endpoint isochronous transactions
// 10: NAK (busy)
// 11: STALL (error)
#define bUEP_T_RES1 0x02 // handshake response type high bit for USB endpoint X transmittal (IN)
#define bUEP_T_RES0 0x01 // handshake response type low bit for USB endpoint X transmittal (IN)
#define MASK_UEP_T_RES 0x03 // bit mask of handshake response type for USB endpoint X transmittal (IN)
#define UEP_T_RES_ACK 0x00
#define UEP_T_RES_TOUT 0x01
#define UEP_T_RES_NAK 0x02
#define UEP_T_RES_STALL 0x03
// bUEP_T_RES1 & bUEP_T_RES0: handshake response type for USB endpoint X transmittal (IN)
// 00: DATA0 or DATA1 then expecting ACK (ready)
// 01: DATA0 or DATA1 then expecting no response, time out from host, for non-zero endpoint isochronous transactions
// 10: NAK (busy)
// 11: STALL (error)
SFR(UEP1_T_LEN, 0xD3); // endpoint 1 transmittal length
SFR(UEP2_CTRL, 0xD4); // endpoint 2 control
SFR(UEP2_T_LEN, 0xD5); // endpoint 2 transmittal length
SFR(UEP3_CTRL, 0xD6); // endpoint 3 control
SFR(UEP3_T_LEN, 0xD7); // endpoint 3 transmittal length
SFR(USB_INT_FG, 0xD8); // USB interrupt flag
SBIT(U_IS_NAK, 0xD8, 7); // ReadOnly: indicate current USB transfer is NAK received
SBIT(U_TOG_OK, 0xD8, 6); // ReadOnly: indicate current USB transfer toggle is OK
SBIT(U_SIE_FREE, 0xD8, 5); // ReadOnly: indicate USB SIE free status
SBIT(UIF_FIFO_OV, 0xD8, 4); // FIFO overflow interrupt flag for USB, direct bit address clear or write 1 to clear
SBIT(UIF_HST_SOF, 0xD8, 3); // host SOF timer interrupt flag for USB host, direct bit address clear or write 1 to clear
SBIT(UIF_SUSPEND, 0xD8, 2); // USB suspend or resume event interrupt flag, direct bit address clear or write 1 to clear
SBIT(UIF_TRANSFER, 0xD8, 1); // USB transfer completion interrupt flag, direct bit address clear or write 1 to clear
SBIT(UIF_DETECT, 0xD8, 0); // device detected event interrupt flag for USB host mode, direct bit address clear or write 1 to clear
SBIT(UIF_BUS_RST, 0xD8, 0); // bus reset event interrupt flag for USB device mode, direct bit address clear or write 1 to clear
SFR(USB_INT_ST, 0xD9); // ReadOnly: USB interrupt status
#define bUIS_IS_NAK 0x80 // ReadOnly: indicate current USB transfer is NAK received for USB device mode
#define bUIS_TOG_OK 0x40 // ReadOnly: indicate current USB transfer toggle is OK
#define bUIS_TOKEN1 0x20 // ReadOnly: current token PID code bit 1 received for USB device mode
#define bUIS_TOKEN0 0x10 // ReadOnly: current token PID code bit 0 received for USB device mode
#define MASK_UIS_TOKEN 0x30 // ReadOnly: bit mask of current token PID code received for USB device mode
#define UIS_TOKEN_OUT 0x00
#define UIS_TOKEN_SOF 0x10
#define UIS_TOKEN_IN 0x20
#define UIS_TOKEN_SETUP 0x30
// bUIS_TOKEN1 & bUIS_TOKEN0: current token PID code received for USB device mode
// 00: OUT token PID received
// 01: SOF token PID received
// 10: IN token PID received
// 11: SETUP token PID received
#define MASK_UIS_ENDP 0x0F // ReadOnly: bit mask of current transfer endpoint number for USB device mode
#define MASK_UIS_H_RES 0x0F // ReadOnly: bit mask of current transfer handshake response for USB host mode: 0000=no response, time out from device, others=handshake response PID received
SFR(USB_MIS_ST, 0xDA); // ReadOnly: USB miscellaneous status
#define bUMS_SOF_PRES 0x80 // ReadOnly: indicate host SOF timer presage status
#define bUMS_SOF_ACT 0x40 // ReadOnly: indicate host SOF timer action status for USB host
#define bUMS_SIE_FREE 0x20 // ReadOnly: indicate USB SIE free status
#define bUMS_R_FIFO_RDY 0x10 // ReadOnly: indicate USB receiving FIFO ready status (not empty)
#define bUMS_BUS_RESET 0x08 // ReadOnly: indicate USB bus reset status
#define bUMS_SUSPEND 0x04 // ReadOnly: indicate USB suspend status
#define bUMS_DM_LEVEL 0x02 // ReadOnly: indicate UDM level saved at device attached to USB host
#define bUMS_DEV_ATTACH 0x01 // ReadOnly: indicate device attached status on USB host
SFR(USB_RX_LEN, 0xDB); // ReadOnly: USB receiving length
SFR(UEP0_CTRL, 0xDC); // endpoint 0 control
SFR(UEP0_T_LEN, 0xDD); // endpoint 0 transmittal length
SFR(UEP4_CTRL, 0xDE); // endpoint 4 control
SFR(UEP4_T_LEN, 0xDF); // endpoint 4 transmittal length
SFR(USB_INT_EN, 0xE1); // USB interrupt enable
#define bUIE_DEV_SOF 0x80 // enable interrupt for SOF received for USB device mode
#define bUIE_DEV_NAK 0x40 // enable interrupt for NAK responded for USB device mode
#define bUIE_FIFO_OV 0x10 // enable interrupt for FIFO overflow
#define bUIE_HST_SOF 0x08 // enable interrupt for host SOF timer action for USB host mode
#define bUIE_SUSPEND 0x04 // enable interrupt for USB suspend or resume event
#define bUIE_TRANSFER 0x02 // enable interrupt for USB transfer completion
#define bUIE_DETECT 0x01 // enable interrupt for USB device detected event for USB host mode
#define bUIE_BUS_RST 0x01 // enable interrupt for USB bus reset event for USB device mode
SFR(USB_CTRL, 0xE2); // USB base control
#define bUC_HOST_MODE 0x80 // enable USB host mode: 0=device mode, 1=host mode
#define bUC_LOW_SPEED 0x40 // enable USB low speed: 0=full speed, 1=low speed
#define bUC_DEV_PU_EN 0x20 // USB device enable and internal pullup resistance enable
#define bUC_SYS_CTRL1 0x20 // USB system control high bit
#define bUC_SYS_CTRL0 0x10 // USB system control low bit
#define MASK_UC_SYS_CTRL 0x30 // bit mask of USB system control
// bUC_HOST_MODE & bUC_SYS_CTRL1 & bUC_SYS_CTRL0: USB system control
// 0 00: disable USB device and disable internal pullup resistance
// 0 01: enable USB device and disable internal pullup resistance, need external pullup resistance
// 0 1x: enable USB device and enable internal pullup resistance
// 1 00: enable USB host and normal status
// 1 01: enable USB host and force UDP/UDM output SE0 state
// 1 10: enable USB host and force UDP/UDM output J state
// 1 11: enable USB host and force UDP/UDM output resume or K state
#define bUC_INT_BUSY 0x08 // enable automatic responding busy for device mode or automatic pause for host mode during interrupt flag UIF_TRANSFER valid
#define bUC_RESET_SIE 0x04 // force reset USB SIE, need software clear
#define bUC_CLR_ALL 0x02 // force clear FIFO and count of USB
#define bUC_DMA_EN 0x01 // DMA enable and DMA interrupt enable for USB
SFR(USB_DEV_AD, 0xE3); // USB device address, lower 7 bits for USB device address
#define bUDA_GP_BIT 0x80 // general purpose bit
#define MASK_USB_ADDR 0x7F // bit mask for USB device address
SFR16(UEP2_DMA, 0xE4); // endpoint 2 buffer start address, little-endian
SFR(UEP2_DMA_L, 0xE4); // endpoint 2 buffer start address low byte
SFR(UEP2_DMA_H, 0xE5); // endpoint 2 buffer start address high byte
SFR16(UEP3_DMA, 0xE6); // endpoint 3 buffer start address, little-endian
SFR(UEP3_DMA_L, 0xE6); // endpoint 3 buffer start address low byte
SFR(UEP3_DMA_H, 0xE7); // endpoint 3 buffer start address high byte
SFR(UEP4_1_MOD, 0xEA); // endpoint 4/1 mode
#define bUEP1_RX_EN 0x80 // enable USB endpoint 1 receiving (OUT)
#define bUEP1_TX_EN 0x40 // enable USB endpoint 1 transmittal (IN)
#define bUEP1_BUF_MOD 0x10 // buffer mode of USB endpoint 1
// bUEPn_RX_EN & bUEPn_TX_EN & bUEPn_BUF_MOD: USB endpoint 1/2/3 buffer mode, buffer start address is UEPn_DMA
// 0 0 x: disable endpoint and disable buffer
// 1 0 0: 64 bytes buffer for receiving (OUT endpoint)
// 1 0 1: dual 64 bytes buffer by toggle bit bUEP_R_TOG selection for receiving (OUT endpoint), total=128bytes
// 0 1 0: 64 bytes buffer for transmittal (IN endpoint)
// 0 1 1: dual 64 bytes buffer by toggle bit bUEP_T_TOG selection for transmittal (IN endpoint), total=128bytes
// 1 1 0: 64 bytes buffer for receiving (OUT endpoint) + 64 bytes buffer for transmittal (IN endpoint), total=128bytes
// 1 1 1: dual 64 bytes buffer by bUEP_R_TOG selection for receiving (OUT endpoint) + dual 64 bytes buffer by bUEP_T_TOG selection for transmittal (IN endpoint), total=256bytes
#define bUEP4_RX_EN 0x08 // enable USB endpoint 4 receiving (OUT)
#define bUEP4_TX_EN 0x04 // enable USB endpoint 4 transmittal (IN)
// bUEP4_RX_EN & bUEP4_TX_EN: USB endpoint 4 buffer mode, buffer start address is UEP0_DMA
// 0 0: single 64 bytes buffer for endpoint 0 receiving & transmittal (OUT & IN endpoint)
// 1 0: single 64 bytes buffer for endpoint 0 receiving & transmittal (OUT & IN endpoint) + 64 bytes buffer for endpoint 4 receiving (OUT endpoint), total=128bytes
// 0 1: single 64 bytes buffer for endpoint 0 receiving & transmittal (OUT & IN endpoint) + 64 bytes buffer for endpoint 4 transmittal (IN endpoint), total=128bytes
// 1 1: single 64 bytes buffer for endpoint 0 receiving & transmittal (OUT & IN endpoint)
// + 64 bytes buffer for endpoint 4 receiving (OUT endpoint) + 64 bytes buffer for endpoint 4 transmittal (IN endpoint), total=192bytes
SFR(UEP2_3_MOD, 0xEB); // endpoint 2/3 mode
#define bUEP3_RX_EN 0x80 // enable USB endpoint 3 receiving (OUT)
#define bUEP3_TX_EN 0x40 // enable USB endpoint 3 transmittal (IN)
#define bUEP3_BUF_MOD 0x10 // buffer mode of USB endpoint 3
#define bUEP2_RX_EN 0x08 // enable USB endpoint 2 receiving (OUT)
#define bUEP2_TX_EN 0x04 // enable USB endpoint 2 transmittal (IN)
#define bUEP2_BUF_MOD 0x01 // buffer mode of USB endpoint 2
SFR16(UEP0_DMA, 0xEC); // endpoint 0 buffer start address, little-endian
SFR(UEP0_DMA_L, 0xEC); // endpoint 0 buffer start address low byte
SFR(UEP0_DMA_H, 0xED); // endpoint 0 buffer start address high byte
SFR16(UEP1_DMA, 0xEE); // endpoint 1 buffer start address, little-endian
SFR(UEP1_DMA_L, 0xEE); // endpoint 1 buffer start address low byte
SFR(UEP1_DMA_H, 0xEF); // endpoint 1 buffer start address high byte
//sfr UH_SETUP = 0xD2; // host aux setup
#define UH_SETUP UEP1_CTRL
#define bUH_PRE_PID_EN 0x80 // USB host PRE PID enable for low speed device via hub
#define bUH_SOF_EN 0x40 // USB host automatic SOF enable
//sfr UH_RX_CTRL = 0xD4; // host receiver endpoint control
#define UH_RX_CTRL UEP2_CTRL
#define bUH_R_TOG 0x80 // expected data toggle flag of host receiving (IN): 0=DATA0, 1=DATA1
#define bUH_R_AUTO_TOG 0x10 // enable automatic toggle after successful transfer completion: 0=manual toggle, 1=automatic toggle
#define bUH_R_RES 0x04 // prepared handshake response type for host receiving (IN): 0=ACK (ready), 1=no response, time out to device, for isochronous transactions
//sfr UH_EP_PID = 0xD5; // host endpoint and token PID, lower 4 bits for endpoint number, upper 4 bits for token PID
#define UH_EP_PID UEP2_T_LEN
#define MASK_UH_TOKEN 0xF0 // bit mask of token PID for USB host transfer
#define MASK_UH_ENDP 0x0F // bit mask of endpoint number for USB host transfer
//sfr UH_TX_CTRL = 0xD6; // host transmittal endpoint control
#define UH_TX_CTRL UEP3_CTRL
#define bUH_T_TOG 0x40 // prepared data toggle flag of host transmittal (SETUP/OUT): 0=DATA0, 1=DATA1
#define bUH_T_AUTO_TOG 0x10 // enable automatic toggle after successful transfer completion: 0=manual toggle, 1=automatic toggle
#define bUH_T_RES 0x01 // expected handshake response type for host transmittal (SETUP/OUT): 0=ACK (ready), 1=no response, time out from device, for isochronous transactions
//sfr UH_TX_LEN = 0xD7; // host transmittal endpoint transmittal length
#define UH_TX_LEN UEP3_T_LEN
//sfr UH_EP_MOD = 0xEB; // host endpoint mode
#define UH_EP_MOD UEP2_3_MOD
#define bUH_EP_TX_EN 0x40 // enable USB host OUT endpoint transmittal
#define bUH_EP_TBUF_MOD 0x10 // buffer mode of USB host OUT endpoint
// bUH_EP_TX_EN & bUH_EP_TBUF_MOD: USB host OUT endpoint buffer mode, buffer start address is UH_TX_DMA
// 0 x: disable endpoint and disable buffer
// 1 0: 64 bytes buffer for transmittal (OUT endpoint)
// 1 1: dual 64 bytes buffer by toggle bit bUH_T_TOG selection for transmittal (OUT endpoint), total=128bytes
#define bUH_EP_RX_EN 0x08 // enable USB host IN endpoint receiving
#define bUH_EP_RBUF_MOD 0x01 // buffer mode of USB host IN endpoint
// bUH_EP_RX_EN & bUH_EP_RBUF_MOD: USB host IN endpoint buffer mode, buffer start address is UH_RX_DMA
// 0 x: disable endpoint and disable buffer
// 1 0: 64 bytes buffer for receiving (IN endpoint)
// 1 1: dual 64 bytes buffer by toggle bit bUH_R_TOG selection for receiving (IN endpoint), total=128bytes
//sfr16 UH_RX_DMA = 0xE4; // host rx endpoint buffer start address, little-endian
#define UH_RX_DMA UEP2_DMA
//sfr UH_RX_DMA_L = 0xE4; // host rx endpoint buffer start address low byte
#define UH_RX_DMA_L UEP2_DMA_L
//sfr UH_RX_DMA_H = 0xE5; // host rx endpoint buffer start address high byte
#define UH_RX_DMA_H UEP2_DMA_H
//sfr16 UH_TX_DMA = 0xE6; // host tx endpoint buffer start address, little-endian
#define UH_TX_DMA UEP3_DMA
//sfr UH_TX_DMA_L = 0xE6; // host tx endpoint buffer start address low byte
#define UH_TX_DMA_L UEP3_DMA_L
//sfr UH_TX_DMA_H = 0xE7; // host tx endpoint buffer start address high byte
#define UH_TX_DMA_H UEP3_DMA_H
/*----- XDATA: xRAM ------------------------------------------*/
#define XDATA_RAM_SIZE 0x0400 // size of expanded xRAM, xdata SRAM embedded chip
/*----- Reference Information --------------------------------------------*/
#define ID_CH554 0x54 // chip ID
/* Interrupt routine address and interrupt number */
#define INT_ADDR_INT0 0x0003 // interrupt vector address for INT0
#define INT_ADDR_TMR0 0x000B // interrupt vector address for timer0
#define INT_ADDR_INT1 0x0013 // interrupt vector address for INT1
#define INT_ADDR_TMR1 0x001B // interrupt vector address for timer1
#define INT_ADDR_UART0 0x0023 // interrupt vector address for UART0
#define INT_ADDR_TMR2 0x002B // interrupt vector address for timer2
#define INT_ADDR_SPI0 0x0033 // interrupt vector address for SPI0
#define INT_ADDR_TKEY 0x003B // interrupt vector address for touch-key timer
#define INT_ADDR_USB 0x0043 // interrupt vector address for USB
#define INT_ADDR_ADC 0x004B // interrupt vector address for ADC
#define INT_ADDR_UART1 0x0053 // interrupt vector address for UART1
#define INT_ADDR_PWMX 0x005B // interrupt vector address for PWM1/2
#define INT_ADDR_GPIO 0x0063 // interrupt vector address for GPIO
#define INT_ADDR_WDOG 0x006B // interrupt vector address for watch-dog timer
#define INT_NO_INT0 0 // interrupt number for INT0
#define INT_NO_TMR0 1 // interrupt number for timer0
#define INT_NO_INT1 2 // interrupt number for INT1
#define INT_NO_TMR1 3 // interrupt number for timer1
#define INT_NO_UART0 4 // interrupt number for UART0
#define INT_NO_TMR2 5 // interrupt number for timer2
#define INT_NO_SPI0 6 // interrupt number for SPI0
#define INT_NO_TKEY 7 // interrupt number for touch-key timer
#define INT_NO_USB 8 // interrupt number for USB
#define INT_NO_ADC 9 // interrupt number for ADC
#define INT_NO_UART1 10 // interrupt number for UART1
#define INT_NO_PWMX 11 // interrupt number for PWM1/2
#define INT_NO_GPIO 12 // interrupt number for GPIO
#define INT_NO_WDOG 13 // interrupt number for watch-dog timer
/* Special Program Space */
#define DATA_FLASH_ADDR 0xC000 // start address of Data-Flash
#define BOOT_LOAD_ADDR 0x3800 // start address of boot loader program
#define ROM_CFG_ADDR 0x3FF8 // chip configuration information address
#define ROM_CHIP_ID_HX 0x3FFA // chip ID number highest byte (only low byte valid)
#define ROM_CHIP_ID_LO 0x3FFC // chip ID number low word
#define ROM_CHIP_ID_HI 0x3FFE // chip ID number high word
/*
New Instruction: MOVX @DPTR1,A
Instruction Code: 0xA5
Instruction Cycle: 1
Instruction Operation:
step-1. write ACC @DPTR1 into xdata SRAM embedded chip
step-2. increase DPTR1
ASM example:
INC XBUS_AUX
MOV DPTR,#TARGET_ADDR ;DPTR1
DEC XBUS_AUX
MOV DPTR,#SOURCE_ADDR ;DPTR0
MOV R7,#xxH
LOOP: MOVX A,@DPTR ;DPTR0
INC DPTR ;DPTR0, if need
.DB 0xA5 ;MOVX @DPTR1,A & INC DPTR1
DJNZ R7,LOOP
*/
#endif // __CH554_H__

View file

@ -1,337 +0,0 @@
/*--------------------------------------------------------------------------
CH554.H
Header file for CH554 microcontrollers.
****************************************
** Copyright (C) W.ch 1999-2014 **
** Web: http://wch.cn **
****************************************
--------------------------------------------------------------------------*/
#ifndef __USB_DEF__
#define __USB_DEF__
/*----- USB constant and structure define --------------------------------*/
/* USB PID */
#ifndef USB_PID_SETUP
#define USB_PID_NULL 0x00 /* reserved PID */
#define USB_PID_SOF 0x05
#define USB_PID_SETUP 0x0D
#define USB_PID_IN 0x09
#define USB_PID_OUT 0x01
#define USB_PID_ACK 0x02
#define USB_PID_NAK 0x0A
#define USB_PID_STALL 0x0E
#define USB_PID_DATA0 0x03
#define USB_PID_DATA1 0x0B
#define USB_PID_PRE 0x0C
#endif
/* USB standard device request code */
#ifndef USB_GET_DESCRIPTOR
#define USB_GET_STATUS 0x00
#define USB_CLEAR_FEATURE 0x01
#define USB_SET_FEATURE 0x03
#define USB_SET_ADDRESS 0x05
#define USB_GET_DESCRIPTOR 0x06
#define USB_SET_DESCRIPTOR 0x07
#define USB_GET_CONFIGURATION 0x08
#define USB_SET_CONFIGURATION 0x09
#define USB_GET_INTERFACE 0x0A
#define USB_SET_INTERFACE 0x0B
#define USB_SYNCH_FRAME 0x0C
#endif
/* USB hub class request code */
#ifndef HUB_GET_DESCRIPTOR
#define HUB_GET_STATUS 0x00
#define HUB_CLEAR_FEATURE 0x01
#define HUB_GET_STATE 0x02
#define HUB_SET_FEATURE 0x03
#define HUB_GET_DESCRIPTOR 0x06
#define HUB_SET_DESCRIPTOR 0x07
#endif
/* USB HID class request code */
#ifndef HID_GET_REPORT
#define HID_GET_REPORT 0x01
#define HID_GET_IDLE 0x02
#define HID_GET_PROTOCOL 0x03
#define HID_SET_REPORT 0x09
#define HID_SET_IDLE 0x0A
#define HID_SET_PROTOCOL 0x0B
#endif
/* Bit define for USB request type */
#ifndef USB_REQ_TYP_MASK
#define USB_REQ_TYP_IN 0x80 /* control IN, device to host */
#define USB_REQ_TYP_OUT 0x00 /* control OUT, host to device */
#define USB_REQ_TYP_READ 0x80 /* control read, device to host */
#define USB_REQ_TYP_WRITE 0x00 /* control write, host to device */
#define USB_REQ_TYP_MASK 0x60 /* bit mask of request type */
#define USB_REQ_TYP_STANDARD 0x00
#define USB_REQ_TYP_CLASS 0x20
#define USB_REQ_TYP_VENDOR 0x40
#define USB_REQ_TYP_RESERVED 0x60
#define USB_REQ_RECIP_MASK 0x1F /* bit mask of request recipient */
#define USB_REQ_RECIP_DEVICE 0x00
#define USB_REQ_RECIP_INTERF 0x01
#define USB_REQ_RECIP_ENDP 0x02
#define USB_REQ_RECIP_OTHER 0x03
#endif
/* USB request type for hub class request */
#ifndef HUB_GET_HUB_DESCRIPTOR
#define HUB_CLEAR_HUB_FEATURE 0x20
#define HUB_CLEAR_PORT_FEATURE 0x23
#define HUB_GET_BUS_STATE 0xA3
#define HUB_GET_HUB_DESCRIPTOR 0xA0
#define HUB_GET_HUB_STATUS 0xA0
#define HUB_GET_PORT_STATUS 0xA3
#define HUB_SET_HUB_DESCRIPTOR 0x20
#define HUB_SET_HUB_FEATURE 0x20
#define HUB_SET_PORT_FEATURE 0x23
#endif
/* Hub class feature selectors */
#ifndef HUB_PORT_RESET
#define HUB_C_HUB_LOCAL_POWER 0
#define HUB_C_HUB_OVER_CURRENT 1
#define HUB_PORT_CONNECTION 0
#define HUB_PORT_ENABLE 1
#define HUB_PORT_SUSPEND 2
#define HUB_PORT_OVER_CURRENT 3
#define HUB_PORT_RESET 4
#define HUB_PORT_POWER 8
#define HUB_PORT_LOW_SPEED 9
#define HUB_C_PORT_CONNECTION 16
#define HUB_C_PORT_ENABLE 17
#define HUB_C_PORT_SUSPEND 18
#define HUB_C_PORT_OVER_CURRENT 19
#define HUB_C_PORT_RESET 20
#endif
/* USB descriptor type */
#ifndef USB_DESCR_TYP_DEVICE
#define USB_DESCR_TYP_DEVICE 0x01
#define USB_DESCR_TYP_CONFIG 0x02
#define USB_DESCR_TYP_STRING 0x03
#define USB_DESCR_TYP_INTERF 0x04
#define USB_DESCR_TYP_ENDP 0x05
#define USB_DESCR_TYP_QUALIF 0x06
#define USB_DESCR_TYP_SPEED 0x07
#define USB_DESCR_TYP_OTG 0x09
#define USB_DESCR_TYP_HID 0x21
#define USB_DESCR_TYP_REPORT 0x22
#define USB_DESCR_TYP_PHYSIC 0x23
#define USB_DESCR_TYP_CS_INTF 0x24
#define USB_DESCR_TYP_CS_ENDP 0x25
#define USB_DESCR_TYP_HUB 0x29
#endif
/* USB device class */
#ifndef USB_DEV_CLASS_HUB
#define USB_DEV_CLASS_RESERVED 0x00
#define USB_DEV_CLASS_AUDIO 0x01
#define USB_DEV_CLASS_COMMUNIC 0x02
#define USB_DEV_CLASS_HID 0x03
#define USB_DEV_CLASS_MONITOR 0x04
#define USB_DEV_CLASS_PHYSIC_IF 0x05
#define USB_DEV_CLASS_POWER 0x06
#define USB_DEV_CLASS_PRINTER 0x07
#define USB_DEV_CLASS_STORAGE 0x08
#define USB_DEV_CLASS_HUB 0x09
#define USB_DEV_CLASS_VEN_SPEC 0xFF
#endif
/* USB endpoint type and attributes */
#ifndef USB_ENDP_TYPE_MASK
#define USB_ENDP_DIR_MASK 0x80
#define USB_ENDP_ADDR_MASK 0x0F
#define USB_ENDP_TYPE_MASK 0x03
#define USB_ENDP_TYPE_CTRL 0x00
#define USB_ENDP_TYPE_ISOCH 0x01
#define USB_ENDP_TYPE_BULK 0x02
#define USB_ENDP_TYPE_INTER 0x03
#endif
#ifndef USB_DEVICE_ADDR
#define USB_DEVICE_ADDR 0x02 /* 默认的USB设备地址 */
#endif
#ifndef DEFAULT_ENDP0_SIZE
#define DEFAULT_ENDP0_SIZE 8 /* default maximum packet size for endpoint 0 */
#endif
#ifndef DEFAULT_ENDP1_SIZE
#define DEFAULT_ENDP1_SIZE 8 /* default maximum packet size for endpoint 1 */
#endif
#ifndef MAX_PACKET_SIZE
#define MAX_PACKET_SIZE 64 /* maximum packet size */
#endif
#ifndef USB_BO_CBW_SIZE
#define USB_BO_CBW_SIZE 0x1F /* 命令块CBW的总长度 */
#define USB_BO_CSW_SIZE 0x0D /* 命令状态块CSW的总长度 */
#endif
#ifndef USB_BO_CBW_SIG0
#define USB_BO_CBW_SIG0 0x55 /* 命令块CBW识别标志'USBC' */
#define USB_BO_CBW_SIG1 0x53
#define USB_BO_CBW_SIG2 0x42
#define USB_BO_CBW_SIG3 0x43
#define USB_BO_CSW_SIG0 0x55 /* 命令状态块CSW识别标志'USBS' */
#define USB_BO_CSW_SIG1 0x53
#define USB_BO_CSW_SIG2 0x42
#define USB_BO_CSW_SIG3 0x53
#endif
typedef struct _USB_SETUP_REQ {
uint8_t bRequestType;
uint8_t bRequest;
uint8_t wValueL;
uint8_t wValueH;
uint8_t wIndexL;
uint8_t wIndexH;
uint8_t wLengthL;
uint8_t wLengthH;
} USB_SETUP_REQ, *PUSB_SETUP_REQ;
typedef USB_SETUP_REQ __xdata *PXUSB_SETUP_REQ;
typedef struct _USB_DEVICE_DESCR {
uint8_t bLength;
uint8_t bDescriptorType;
uint8_t bcdUSBL;
uint8_t bcdUSBH;
uint8_t bDeviceClass;
uint8_t bDeviceSubClass;
uint8_t bDeviceProtocol;
uint8_t bMaxPacketSize0;
uint8_t idVendorL;
uint8_t idVendorH;
uint8_t idProductL;
uint8_t idProductH;
uint8_t bcdDeviceL;
uint8_t bcdDeviceH;
uint8_t iManufacturer;
uint8_t iProduct;
uint8_t iSerialNumber;
uint8_t bNumConfigurations;
} USB_DEV_DESCR, *PUSB_DEV_DESCR;
typedef USB_DEV_DESCR __xdata *PXUSB_DEV_DESCR;
typedef struct _USB_CONFIG_DESCR {
uint8_t bLength;
uint8_t bDescriptorType;
uint8_t wTotalLengthL;
uint8_t wTotalLengthH;
uint8_t bNumInterfaces;
uint8_t bConfigurationValue;
uint8_t iConfiguration;
uint8_t bmAttributes;
uint8_t MaxPower;
} USB_CFG_DESCR, *PUSB_CFG_DESCR;
typedef USB_CFG_DESCR __xdata *PXUSB_CFG_DESCR;
typedef struct _USB_INTERF_DESCR {
uint8_t bLength;
uint8_t bDescriptorType;
uint8_t bInterfaceNumber;
uint8_t bAlternateSetting;
uint8_t bNumEndpoints;
uint8_t bInterfaceClass;
uint8_t bInterfaceSubClass;
uint8_t bInterfaceProtocol;
uint8_t iInterface;
} USB_ITF_DESCR, *PUSB_ITF_DESCR;
typedef USB_ITF_DESCR __xdata *PXUSB_ITF_DESCR;
typedef struct _USB_ENDPOINT_DESCR {
uint8_t bLength;
uint8_t bDescriptorType;
uint8_t bEndpointAddress;
uint8_t bmAttributes;
uint8_t wMaxPacketSizeL;
uint8_t wMaxPacketSizeH;
uint8_t bInterval;
} USB_ENDP_DESCR, *PUSB_ENDP_DESCR;
typedef USB_ENDP_DESCR __xdata *PXUSB_ENDP_DESCR;
typedef struct _USB_CONFIG_DESCR_LONG {
USB_CFG_DESCR cfg_descr;
USB_ITF_DESCR itf_descr;
USB_ENDP_DESCR endp_descr[1];
} USB_CFG_DESCR_LONG, *PUSB_CFG_DESCR_LONG;
typedef USB_CFG_DESCR_LONG __xdata *PXUSB_CFG_DESCR_LONG;
typedef struct _USB_HUB_DESCR {
uint8_t bDescLength;
uint8_t bDescriptorType;
uint8_t bNbrPorts;
uint8_t wHubCharacteristicsL;
uint8_t wHubCharacteristicsH;
uint8_t bPwrOn2PwrGood;
uint8_t bHubContrCurrent;
uint8_t DeviceRemovable;
uint8_t PortPwrCtrlMask;
} USB_HUB_DESCR, *PUSB_HUB_DESCR;
typedef USB_HUB_DESCR __xdata *PXUSB_HUB_DESCR;
typedef struct _USB_HID_DESCR {
uint8_t bLength;
uint8_t bDescriptorType;
uint8_t bcdHIDL;
uint8_t bcdHIDH;
uint8_t bCountryCode;
uint8_t bNumDescriptors;
uint8_t bDescriptorTypeX;
uint8_t wDescriptorLengthL;
uint8_t wDescriptorLengthH;
} USB_HID_DESCR, *PUSB_HID_DESCR;
typedef USB_HID_DESCR __xdata *PXUSB_HID_DESCR;
typedef struct _UDISK_BOC_CBW { /* command of BulkOnly USB-FlashDisk */
uint8_t mCBW_Sig0;
uint8_t mCBW_Sig1;
uint8_t mCBW_Sig2;
uint8_t mCBW_Sig3;
uint8_t mCBW_Tag0;
uint8_t mCBW_Tag1;
uint8_t mCBW_Tag2;
uint8_t mCBW_Tag3;
uint8_t mCBW_DataLen0;
uint8_t mCBW_DataLen1;
uint8_t mCBW_DataLen2;
uint8_t mCBW_DataLen3; /* uppest byte of data length, always is 0 */
uint8_t mCBW_Flag; /* transfer direction and etc. */
uint8_t mCBW_LUN;
uint8_t mCBW_CB_Len; /* length of command block */
uint8_t mCBW_CB_Buf[16]; /* command block buffer */
} UDISK_BOC_CBW, *PUDISK_BOC_CBW;
typedef UDISK_BOC_CBW __xdata *PXUDISK_BOC_CBW;
typedef struct _UDISK_BOC_CSW { /* status of BulkOnly USB-FlashDisk */
uint8_t mCSW_Sig0;
uint8_t mCSW_Sig1;
uint8_t mCSW_Sig2;
uint8_t mCSW_Sig3;
uint8_t mCSW_Tag0;
uint8_t mCSW_Tag1;
uint8_t mCSW_Tag2;
uint8_t mCSW_Tag3;
uint8_t mCSW_Residue0; /* return: remainder bytes */
uint8_t mCSW_Residue1;
uint8_t mCSW_Residue2;
uint8_t mCSW_Residue3; /* uppest byte of remainder length, always is 0 */
uint8_t mCSW_Status; /* return: result status */
} UDISK_BOC_CSW, *PUDISK_BOC_CSW;
typedef UDISK_BOC_CSW __xdata *PXUDISK_BOC_CSW;
#endif // __USB_DEF__

View file

@ -1,203 +0,0 @@
/********************************** (C) COPYRIGHT *******************************
* File Name : Debug.C
* Author : WCH
* Version : V1.0
* Date : 2017/01/20
* Description : CH554 DEBUG Interface
CH554 main frequency modification, delay function definition
                     Serial port 0 and serial port 1 initialization
                     Serial port 0 and serial port 1 transceiver subfunctions
                     Watchdog initialization
*******************************************************************************/
#include <stdint.h>
#include "ch554.h"
#include "debug.h"
/*******************************************************************************
* Function Name : CfgFsys( )
* Description : CH554 clock selection and configuration function, Fsys 6MHz is used by default, FREQ_SYS can be passed
                 CLOCK_CFG configuration, the formula is as follows:
                 Fsys = (Fosc * 4 / (CLOCK_CFG & MASK_SYS_CK_SEL); the specific clock needs to be configured by yourself
*******************************************************************************/
void CfgFsys( )
{
SAFE_MOD = 0x55;
SAFE_MOD = 0xAA;
// CLOCK_CFG |= bOSC_EN_XT; // Enable external crystal
// CLOCK_CFG & = ~ bOSC_EN_INT; // Turn off the internal crystal
#if FREQ_SYS == 32000000
CLOCK_CFG = CLOCK_CFG & ~ MASK_SYS_CK_SEL | 0x07; // 32MHz
#elif FREQ_SYS == 24000000
CLOCK_CFG = CLOCK_CFG & ~ MASK_SYS_CK_SEL | 0x06; // 24MHz
#elif FREQ_SYS == 16000000
CLOCK_CFG = CLOCK_CFG & ~ MASK_SYS_CK_SEL | 0x05; // 16MHz
#elif FREQ_SYS == 12000000
CLOCK_CFG = CLOCK_CFG & ~ MASK_SYS_CK_SEL | 0x04; // 12MHz
#elif FREQ_SYS == 6000000
CLOCK_CFG = CLOCK_CFG & ~ MASK_SYS_CK_SEL | 0x03; // 6MHz
#elif FREQ_SYS == 3000000
CLOCK_CFG = CLOCK_CFG & ~ MASK_SYS_CK_SEL | 0x02; // 3MHz
#elif FREQ_SYS == 750000
CLOCK_CFG = CLOCK_CFG & ~ MASK_SYS_CK_SEL | 0x01; // 750KHz
#elif FREQ_SYS == 187500
CLOCK_CFG = CLOCK_CFG & ~ MASK_SYS_CK_SEL | 0x00; // 187.5MHz
#else
#warning FREQ_SYS invalid or not set
#endif
SAFE_MOD = 0x00;
}
/*******************************************************************************
* Function Name : mDelayus(UNIT16 n)
* Description : us delay function
* Input : UNIT16 n
* Output : None
* Return : None
*******************************************************************************/
void mDelayuS( uint16_t n ) // Delay in uS
{
#ifdef FREQ_SYS
#if FREQ_SYS <= 6000000
n >>= 2;
#endif
#if FREQ_SYS <= 3000000
n >>= 2;
#endif
#if FREQ_SYS <= 750000
n >>= 4;
#endif
#endif
while ( n ) { // total = 12~13 Fsys cycles, 1uS @Fsys=12MHz
++ SAFE_MOD; // 2 Fsys cycles, for higher Fsys, add operation here
#ifdef FREQ_SYS
#if FREQ_SYS >= 14000000
++ SAFE_MOD;
#endif
#if FREQ_SYS >= 16000000
++ SAFE_MOD;
#endif
#if FREQ_SYS >= 18000000
++ SAFE_MOD;
#endif
#if FREQ_SYS >= 20000000
++ SAFE_MOD;
#endif
#if FREQ_SYS >= 22000000
++ SAFE_MOD;
#endif
#if FREQ_SYS >= 24000000
++ SAFE_MOD;
#endif
#if FREQ_SYS >= 26000000
++ SAFE_MOD;
#endif
#if FREQ_SYS >= 28000000
++ SAFE_MOD;
#endif
#if FREQ_SYS >= 30000000
++ SAFE_MOD;
#endif
#if FREQ_SYS >= 32000000
++ SAFE_MOD;
#endif
#endif
-- n;
}
}
/*******************************************************************************
* Function Name : mDelayms(UNIT16 n)
* Description : ms delay function
* Input : UNIT16 n
* Output : None
* Return : None
*******************************************************************************/
void mDelaymS( uint16_t n ) // Delay in mS
{
while ( n ) {
#ifdef DELAY_MS_HW
while ( ( TKEY_CTRL & bTKC_IF ) == 0 );
while ( TKEY_CTRL & bTKC_IF );
#else
mDelayuS( 1000 );
#endif
-- n;
}
}
#if SDCC < 370
void putchar(char c)
{
while (!TI); /* assumes UART is initialized */
TI = 0;
SBUF = c;
}
char getchar() {
while(!RI); /* assumes UART is initialized */
RI = 0;
return SBUF;
}
#else
int putchar(int c)
{
while (!TI); /* assumes UART is initialized */
TI = 0;
SBUF = c & 0xFF;
return c;
}
int getchar() {
while(!RI); /* assumes UART is initialized */
RI = 0;
return SBUF;
}
#endif
// Set pin p1.4 and p1.5 to GPIO output mode.
void gpio_init(){
// p1.4
P1_MOD_OC &= ~0x10;
P1_DIR_PU |= 0x10;
// p1.5
P1_MOD_OC &= ~0x20;
P1_DIR_PU |= 0x20;
}
void gpio_set(uint8_t pin) {
switch (pin)
{
case 0x10: // p1.4
P1 |= 0x10;
break;
case 0x20: // p1.5
P1 |= 0x20;
break;
default: // do nothing, unsupported pin.
break;
}
}
void gpio_unset(uint8_t pin) {
switch (pin)
{
case 0x10:
P1 &= ~0x10;
break;
case 0x20:
P1 &= ~0x20;
break;
default: // do nothing, unsupported pin.
break;
}
}

View file

@ -1,184 +0,0 @@

/* Debug */
/* Provide printf subroutine and delay function */
#pragma once
#include <stdint.h>
#ifndef UART0_BAUD
#define UART0_BAUD 9600
#endif
#ifndef UART1_BAUD
#define UART1_BAUD 9600
#endif
void CfgFsys( ); // CH554 clock selection and configuration
void mDelayuS (uint16_t n); // Delay in units of uS
void mDelaymS (uint16_t n); // Delay in mS
/*******************************************************************************
* Function Name : CH554UART0Alter()
* Description : CH554 serial port 0 pin mapping, serial port mapping to P0.2 and P0.3
*******************************************************************************/
inline void CH554UART0Alter()
{
PIN_FUNC |= bUART0_PIN_X; //串口映射到P1.2和P1.3
}
/*******************************************************************************
* Function Name : mInitSTDIO()
* Description : CH554 serial port 0 is initialized, T1 is used as the baud rate generator of UART0 by default, T2 can also be used
                   As a baud rate generator
*******************************************************************************/
inline void mInitSTDIO( )
{
uint32_t x;
uint8_t x2;
SM0 = 0;
SM1 = 1;
SM2 = 0; //Serial port 0 usage mode 1
//Use Timer1 as a baud rate generator
RCLK = 0; //UART0 receive clock
TCLK = 0; //UART0 transmit clock
PCON |= SMOD;
x = 10 * FREQ_SYS / UART0_BAUD / 16; //If you change the main frequency, be careful not to overflow the value of x
x2 = x % 10;
x /= 10;
if ( x2 >= 5 ) x ++; //rounding
TMOD = TMOD & ~ bT1_GATE & ~ bT1_CT & ~ MASK_T1_MOD | bT1_M1; //0X20, Timer1 as 8-bit auto-reload timer
T2MOD = T2MOD | bTMR_CLK | bT1_CLK; //Timer1 clock selection
TH1 = 0-x; //12MHz crystal oscillator, buad / 12 is the actual need to set the baud rate
TR1 = 1; //Start timer 1
TI = 1;
REN = 1; //Serial 0 receive enable
}
/*******************************************************************************
* Function Name : CH554UART0RcvByte()
* Description : CH554UART0 receives a byte
* Return : SBUF
*******************************************************************************/
inline uint8_t CH554UART0RcvByte( )
{
while(RI == 0); // wait for uart rx interrupt flag
RI = 0;
return SBUF;
}
/*******************************************************************************
* Function Name : CH554UART0SendByte(uint8_t SendDat)
* Description : CH554UART0 sends a byte
* Input : uint8_t SendDat; the data to be sent
*******************************************************************************/
inline void CH554UART0SendByte(uint8_t SendDat)
{
SBUF = SendDat;
while(TI ==0); // wait for transmit to finish (TI == 1)
TI = 0;
}
/*******************************************************************************
* Function Name : CH554UART1Alter()
* Description : Set the alternate pin mappings for UART1 (TX on P3.2, RX on P3.4)
*******************************************************************************/
inline void CH554UART1Alter()
{
PIN_FUNC |= bUART1_PIN_X;
}
/*******************************************************************************
* Function Name : UART1Setup()
* Description : CH554串口1初始化
*******************************************************************************/
inline void UART1Setup()
{
U1SM0 = 0; //UART1选择8位数据位
U1SMOD = 1; //快速模式
U1REN = 1; //使能接收
// should correct for rounding in SBAUD1 calculation
SBAUD1 = 256 - FREQ_SYS/16/UART1_BAUD;
}
/*******************************************************************************
* Function Name : CH554UART1RcvByte()
* Description : CH554UART1接收一个字节
* Return : SBUF
*******************************************************************************/
inline uint8_t CH554UART1RcvByte( )
{
while(U1RI == 0); //查询接收,中断方式可不用
U1RI = 0;
return SBUF1;
}
/*******************************************************************************
* Function Name : CH554UART1SendByte(uint8_t SendDat)
* Description : CH554UART1发送一个字节
* Input : uint8_t SendDat
*******************************************************************************/
inline void CH554UART1SendByte(uint8_t SendDat)
{
SBUF1 = SendDat; //查询发送中断方式可不用下面2条语句,但发送前需TI=0
while(U1TI ==0);
U1TI = 0;
}
#if SDCC < 370
void putchar(char c);
char getchar();
#else
int putchar(int c);
int getchar(void);
#endif
/*******************************************************************************
* Function Name : CH554WDTModeSelect(uint8_t mode)
* Description : CH554 watchdog mode selection
* Input : uint8_t mode
0 timer
1 watchDog
* Output : None
* Return : None
*******************************************************************************/
inline void CH554WDTModeSelect(uint8_t mode)
{
SAFE_MOD = 0x55;
SAFE_MOD = 0xaa; //Enter Safe Mode
if(mode){
GLOBAL_CFG |= bWDOG_EN; //Start watchdog reset
}
else GLOBAL_CFG &= ~bWDOG_EN; //Start watchdog only as a timer
SAFE_MOD = 0x00; //exit safe Mode
WDOG_COUNT = 0; //Watchdog assignment initial value
}
/*******************************************************************************
* Function Name : CH554WDTFeed(uint8_t tim)
* Description : CH554 watchdog timer time setting
* Input : uint8_t tim watchdog reset time setting
00H(6MHz)=2.8s
80H(6MHz)=1.4s
* Output : None
* Return : None
*******************************************************************************/
inline void CH554WDTFeed(uint8_t tim)
{
WDOG_COUNT = tim; // Watchdog counter assignment
}
// Set pin p1.4 and p1.5 to GPIO output mode.
void gpio_init();
void gpio_set(uint8_t pin);
void gpio_unset(uint8_t pin);

View file

@ -1,28 +0,0 @@
#!/usr/bin/env python3
import uuid
import argparse
import encode_usb_strings
magic = encode_usb_strings.string_to_descriptor("68de5d27-e223-4874-bc76-a54d6e84068f")
replacement = encode_usb_strings.string_to_descriptor(str(uuid.uuid4()))
parser = argparse.ArgumentParser(description='CH552 USB serial number injector. Replaces the default UUID with a randomly generated UUID4')
parser.add_argument('-i', required=True, help='input file')
parser.add_argument('-o', required=True, help='output file')
args = parser.parse_args()
f = bytearray(open(args.i, 'rb').read())
pos = f.find(magic)
if pos < 0:
print('failed to find magic string')
exit(1)
f[pos:(pos+len(magic))] = replacement
with open(args.o, 'wb') as of:
of.write(f)

View file

@ -1,659 +0,0 @@
/********************************** (C) COPYRIGHT *******************************
* File Name : CDC.C
* Author : WCH
* Version : V1.0
* Date : 2017/03/01
* Description : CH554 as CDC device to serial port, select serial port 1
*******************************************************************************/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <ch554.h>
#include <ch554_usb.h>
#include <debug.h>
__xdata __at (0x0000) uint8_t Ep0Buffer[DEFAULT_ENDP0_SIZE]; // Endpoint 0 OUT & IN buffer, must be an even address
__xdata __at (0x0040) uint8_t Ep1Buffer[DEFAULT_ENDP1_SIZE]; //Endpoint 1 upload buffer
__xdata __at (0x0080) uint8_t Ep2Buffer[2*MAX_PACKET_SIZE]; //Endpoint 2 IN & OUT buffer, must be an even address
uint16_t SetupLen;
uint8_t SetupReq,Count,UsbConfig;
const uint8_t * pDescr; //USB configuration flag
USB_SETUP_REQ SetupReqBuf; //Temporary Setup package
#define UsbSetupBuf ((PUSB_SETUP_REQ)Ep0Buffer)
#define SET_LINE_CODING 0X20 // Configures DTE rate, stop-bits, parity, and number-of-character
#define GET_LINE_CODING 0X21 // This request allows the host to find out the currently configured line coding.
#define SET_CONTROL_LINE_STATE 0X22 // This request generates RS-232/V.24 style control signals.
/*设备描述符*/
__code uint8_t DevDesc[] = {0x12,0x01,0x10,0x01,0x02,0x00,0x00,DEFAULT_ENDP0_SIZE,
// 0x86,0x1a, // VID
// 0x22,0x57, // PID
0x07,0x12, // VID
0x87,0x88, // PID
0x00,0x01,0x01,0x02,
0x03,0x01
};
__code uint8_t CfgDesc[] ={
0x09,0x02,0x43,0x00,0x02,0x01,0x00,0xa0,0x32, //Configuration descriptor (two interfaces)
// The following is the interface 0 (CDC interface) descriptor
0x09,0x04,0x00,0x00,0x01,0x02,0x02,0x01,0x00, // CDC interface descriptor (one endpoint)
//The following is the function descriptor
0x05,0x24,0x00,0x10,0x01, //Function descriptor (header)
0x05,0x24,0x01,0x00,0x00, //Management descriptor (no data interface) 03 01
0x04,0x24,0x02,0x02, //stand by,Set_Line_Coding、Set_Control_Line_State、Get_Line_Coding、Serial_State
0x05,0x24,0x06,0x00,0x01, //CDC interface numbered 0; data interface numbered 1
0x07,0x05,0x81,0x03,0x08,0x00,0xFF, //Interrupt upload endpoint descriptor
//The following is the interface 1 (data interface) descriptor
0x09,0x04,0x01,0x00,0x02,0x0a,0x00,0x00,0x00, //Data interface descriptor
0x07,0x05,0x02,0x02,0x40,0x00,0x00, //Endpoint descriptor
0x07,0x05,0x82,0x02,0x40,0x00,0x00, //Endpoint descriptor
};
/*字符串描述符*/
unsigned char __code LangDes[]={0x04,0x03,0x09,0x04}; //Language descriptor
#include "usb_strings.h"
//unsigned char __code SerDes[]={ //Serial number string descriptor
// 0x14,0x03,
// 0x32,0x00,0x30,0x00,0x31,0x00,0x37,0x00,0x2D,0x00,
// 0x32,0x00,0x2D,0x00,
// 0x32,0x00,0x35,0x00
// };
//unsigned char __code Prod_Des[]={ //Product string descriptor
// 0x14,0x03,
// 0x43,0x00,0x48,0x00,0x35,0x00,0x35,0x00,0x34,0x00,0x5F,0x00,
// 0x43,0x00,0x44,0x00,0x43,0x00,
// };
//unsigned char __code Manuf_Des[]={
// 0x0A,0x03,
// 0x5F,0x6c,0xCF,0x82,0x81,0x6c,0x52,0x60,
//};
//cdc参数
__xdata uint8_t LineCoding[7]={0x00,0xe1,0x00,0x00,0x00,0x00,0x08}; //The initial baud rate is 57600, 1 stop bit, no parity, 8 data bits.
#define UART_REV_LEN 64 //Serial receive buffer size
__idata uint8_t Receive_Uart_Buf[UART_REV_LEN]; //Serial receive buffer
volatile __idata uint8_t Uart_Input_Point = 0; //Circular buffer write pointer, bus reset needs to be initialized to 0
volatile __idata uint8_t Uart_Output_Point = 0; //Take pointer out of circular buffer, bus reset needs to be initialized to 0
volatile __idata uint8_t UartByteCount = 0; //Number of bytes remaining in the current buffer
volatile __idata uint8_t USBByteCount = 0; //Represents the data received by the USB endpoint
volatile __idata uint8_t USBBufOutPoint = 0; //Fetch data pointer
volatile __idata uint8_t UpPoint2_Busy = 0; //Whether the upload endpoint is busy
/*******************************************************************************
* Function Name : USBDeviceCfg()
* Description : USB device mode configuration
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void USBDeviceCfg()
{
USB_CTRL = 0x00; //Clear USB control register
USB_CTRL &= ~bUC_HOST_MODE; //This bit selects the device mode
USB_CTRL |= bUC_DEV_PU_EN | bUC_INT_BUSY | bUC_DMA_EN; //USB device and internal pull-up enable, automatically return to NAK before interrupt flag is cleared
USB_DEV_AD = 0x00; //Device address initialization
// USB_CTRL |= bUC_LOW_SPEED;
// UDEV_CTRL |= bUD_LOW_SPEED; //Select low speed 1.5M mode
USB_CTRL &= ~bUC_LOW_SPEED;
UDEV_CTRL &= ~bUD_LOW_SPEED; //Select full speed 12M mode, the default mode
UDEV_CTRL = bUD_PD_DIS; // Disable DP / DM pull-down resistor
UDEV_CTRL |= bUD_PORT_EN; //Enable physical port
}
/*******************************************************************************
* Function Name : USBDeviceIntCfg()
* Description : USB device mode interrupt initialization
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void USBDeviceIntCfg()
{
USB_INT_EN |= bUIE_SUSPEND; //Enable device suspend interrupt
USB_INT_EN |= bUIE_TRANSFER; //Enable USB transfer completion interrupt
USB_INT_EN |= bUIE_BUS_RST; //Enable device mode USB bus reset interrupt
USB_INT_FG |= 0x1F; //Clear interrupt flag
IE_USB = 1; //Enable USB interrupt
EA = 1; //Allow microcontroller interrupt
}
/*******************************************************************************
* Function Name : USBDeviceEndPointCfg()
* Description : USB device mode endpoint configuration, simulation compatible HID device, in addition to endpoint 0 control transmission, also includes endpoint 2 batch upload
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void USBDeviceEndPointCfg()
{
// TODO: Is casting the right thing here? What about endianness?
UEP1_DMA = (uint16_t) Ep1Buffer; //Endpoint 1 sends data transfer address
UEP2_DMA = (uint16_t) Ep2Buffer; //Endpoint 2 IN data transfer address
UEP2_3_MOD = 0xCC; //Endpoint 2/3 single buffer transceiver enable
UEP2_CTRL = bUEP_AUTO_TOG | UEP_T_RES_NAK | UEP_R_RES_ACK; //Endpoint 2 automatically flips the synchronization flag, IN transaction returns NAK, OUT returns ACK
UEP1_CTRL = bUEP_AUTO_TOG | UEP_T_RES_NAK; //Endpoint 1 automatically flips the synchronization flag, IN transaction returns NAK
UEP0_DMA = (uint16_t) Ep0Buffer; //Endpoint 0 data transfer address
UEP4_1_MOD = 0X40; //Endpoint 1 upload buffer; endpoint 0 single 64-byte send and receive buffer
UEP0_CTRL = UEP_R_RES_ACK | UEP_T_RES_NAK; //Manual flip, OUT transaction returns ACK, IN transaction returns NAK
}
/*******************************************************************************
* Function Name : Config_Uart1(uint8_t *cfg_uart)
* Description : Configure serial port 1 parameters
* Input : Serial port configuration parameters Four bit baud rate, stop bit, parity, data bit
* Output : None
* Return : None
*******************************************************************************/
void Config_Uart1(uint8_t *cfg_uart)
{
uint32_t uart1_buad = 0;
*((uint8_t *)&uart1_buad) = cfg_uart[0];
*((uint8_t *)&uart1_buad+1) = cfg_uart[1];
*((uint8_t *)&uart1_buad+2) = cfg_uart[2];
*((uint8_t *)&uart1_buad+3) = cfg_uart[3];
SBAUD1 = 256 - FREQ_SYS/16/uart1_buad; // SBAUD1 = 256 - Fsys / 16 / baud rate
IE_UART1 = 1;
}
/*******************************************************************************
* Function Name : DeviceInterrupt()
* Description : CH559USB interrupt processing function
*******************************************************************************/
void DeviceInterrupt(void) __interrupt (INT_NO_USB) //USB interrupt service routine, using register set 1
{
uint16_t len;
if(UIF_TRANSFER) //USB transfer complete flag
{
switch (USB_INT_ST & (MASK_UIS_TOKEN | MASK_UIS_ENDP))
{
case UIS_TOKEN_IN | 1: //endpoint 1# Endpoint interrupts upload
UEP1_T_LEN = 0;
UEP1_CTRL = UEP1_CTRL & ~ MASK_UEP_T_RES | UEP_T_RES_NAK; //Default answer NAK
break;
case UIS_TOKEN_IN | 2: //endpoint 2# Endpoint bulk upload
{
UEP2_T_LEN = 0; //The pre-used sending length must be cleared
UEP2_CTRL = UEP2_CTRL & ~ MASK_UEP_T_RES | UEP_T_RES_NAK; //Default answer NAK
UpPoint2_Busy = 0; //clear busy flag
}
break;
case UIS_TOKEN_OUT | 2: //endpoint 3# Endpoint batch download
if ( U_TOG_OK ) // Out-of-sync packets will be dropped
{
USBByteCount = USB_RX_LEN; // Grads length of recieved data
UEP2_CTRL = UEP2_CTRL & ~ MASK_UEP_R_RES | UEP_R_RES_NAK; //NAK after receiving a packet of data, the main function finishes processing, and the main function modifies the response mode
}
break;
case UIS_TOKEN_SETUP | 0: //SETUP routine
len = USB_RX_LEN;
if(len == (sizeof(USB_SETUP_REQ)))
{
SetupLen = ((uint16_t)UsbSetupBuf->wLengthH<<8) | (UsbSetupBuf->wLengthL);
len = 0; // Defaults to success and uploading 0 length
SetupReq = UsbSetupBuf->bRequest;
if ( ( UsbSetupBuf->bRequestType & USB_REQ_TYP_MASK ) != USB_REQ_TYP_STANDARD )// non-standard request
{
switch( SetupReq )
{
case GET_LINE_CODING: //0x21 currently configured
pDescr = LineCoding;
len = sizeof(LineCoding);
len = SetupLen >= DEFAULT_ENDP0_SIZE ? DEFAULT_ENDP0_SIZE : SetupLen; // The length of this transmission
memcpy(Ep0Buffer,pDescr,len);
SetupLen -= len;
pDescr += len;
break;
case SET_CONTROL_LINE_STATE: //0x22 generates RS-232/V.24 style control signals
break;
case SET_LINE_CODING: //0x20 Configure
break;
default:
len = 0xFF; /*Command not supported*/
break;
}
}
else //Standard request
{
switch(SetupReq) //Request code
{
case USB_GET_DESCRIPTOR:
switch(UsbSetupBuf->wValueH)
{
case 1: // device descriptor
pDescr = DevDesc; //Send the device descriptor to the buffer to be sent
len = sizeof(DevDesc);
break;
case 2: //configuration descriptor
pDescr = CfgDesc; //Send the device descriptor to the buffer to be sent
len = sizeof(CfgDesc);
break;
case 3:
if(UsbSetupBuf->wValueL == 0)
{
pDescr = LangDes;
len = sizeof(LangDes);
}
else if(UsbSetupBuf->wValueL == 1)
{
pDescr = Manuf_Des;
len = sizeof(Manuf_Des);
}
else if(UsbSetupBuf->wValueL == 2)
{
pDescr = Prod_Des;
len = sizeof(Prod_Des);
}
else
{
pDescr = SerDes;
len = sizeof(SerDes);
}
break;
default:
len = 0xff; //Unsupported command or error
break;
}
if ( SetupLen > len )
{
SetupLen = len; //Limit total length
}
len = SetupLen >= DEFAULT_ENDP0_SIZE ? DEFAULT_ENDP0_SIZE : SetupLen; //This transmission length
memcpy(Ep0Buffer,pDescr,len); //Load upload data
SetupLen -= len;
pDescr += len;
break;
case USB_SET_ADDRESS:
SetupLen = UsbSetupBuf->wValueL; //Temporary storage of USB device address
break;
case USB_GET_CONFIGURATION:
Ep0Buffer[0] = UsbConfig;
if ( SetupLen >= 1 )
{
len = 1;
}
break;
case USB_SET_CONFIGURATION:
UsbConfig = UsbSetupBuf->wValueL;
break;
case USB_GET_INTERFACE:
break;
case USB_CLEAR_FEATURE: //Clear Feature
if( ( UsbSetupBuf->bRequestType & 0x1F ) == USB_REQ_RECIP_DEVICE ) /* Remove device */
{
if( ( ( ( uint16_t )UsbSetupBuf->wValueH << 8 ) | UsbSetupBuf->wValueL ) == 0x01 )
{
if( CfgDesc[ 7 ] & 0x20 )
{
/* Wake */
}
else
{
len = 0xFF; /* operation failed */
}
}
else
{
len = 0xFF; /* operation failed */
}
}
else if ( ( UsbSetupBuf->bRequestType & USB_REQ_RECIP_MASK ) == USB_REQ_RECIP_ENDP )// endpoint
{
switch( UsbSetupBuf->wIndexL )
{
case 0x83:
UEP3_CTRL = UEP3_CTRL & ~ ( bUEP_T_TOG | MASK_UEP_T_RES ) | UEP_T_RES_NAK;
break;
case 0x03:
UEP3_CTRL = UEP3_CTRL & ~ ( bUEP_R_TOG | MASK_UEP_R_RES ) | UEP_R_RES_ACK;
break;
case 0x82:
UEP2_CTRL = UEP2_CTRL & ~ ( bUEP_T_TOG | MASK_UEP_T_RES ) | UEP_T_RES_NAK;
break;
case 0x02:
UEP2_CTRL = UEP2_CTRL & ~ ( bUEP_R_TOG | MASK_UEP_R_RES ) | UEP_R_RES_ACK;
break;
case 0x81:
UEP1_CTRL = UEP1_CTRL & ~ ( bUEP_T_TOG | MASK_UEP_T_RES ) | UEP_T_RES_NAK;
break;
case 0x01:
UEP1_CTRL = UEP1_CTRL & ~ ( bUEP_R_TOG | MASK_UEP_R_RES ) | UEP_R_RES_ACK;
break;
default:
len = 0xFF; // Unsupported endpoint
break;
}
}
else
{
len = 0xFF; // It's not that the endpoint doesn't support it
}
break;
case USB_SET_FEATURE: /* Set Feature */
if( ( UsbSetupBuf->bRequestType & 0x1F ) == USB_REQ_RECIP_DEVICE ) /* Set up the device */
{
if( ( ( ( uint16_t )UsbSetupBuf->wValueH << 8 ) | UsbSetupBuf->wValueL ) == 0x01 )
{
if( CfgDesc[ 7 ] & 0x20 )
{
/* hibernate */
#ifdef DE_PRINTF
printf( "suspend\n" ); //sleep state
#endif
while ( XBUS_AUX & bUART0_TX )
{
; //等待发送完成
}
SAFE_MOD = 0x55;
SAFE_MOD = 0xAA;
WAKE_CTRL = bWAK_BY_USB | bWAK_RXD0_LO | bWAK_RXD1_LO; //USB or RXD0/1 can be woken up when there is a signal
PCON |= PD; // sleep
SAFE_MOD = 0x55;
SAFE_MOD = 0xAA;
WAKE_CTRL = 0x00;
}
else
{
len = 0xFF; /* operation failed */
}
}
else
{
len = 0xFF; /* operation failed */
}
}
else if( ( UsbSetupBuf->bRequestType & 0x1F ) == USB_REQ_RECIP_ENDP ) /* Set endpoint */
{
if( ( ( ( uint16_t )UsbSetupBuf->wValueH << 8 ) | UsbSetupBuf->wValueL ) == 0x00 )
{
switch( ( ( uint16_t )UsbSetupBuf->wIndexH << 8 ) | UsbSetupBuf->wIndexL )
{
case 0x83:
UEP3_CTRL = UEP3_CTRL & (~bUEP_T_TOG) | UEP_T_RES_STALL;/* Set endpoint 3 IN STALL */
break;
case 0x03:
UEP3_CTRL = UEP3_CTRL & (~bUEP_R_TOG) | UEP_R_RES_STALL;/* Set endpoint 3 OUT Stall */
break;
case 0x82:
UEP2_CTRL = UEP2_CTRL & (~bUEP_T_TOG) | UEP_T_RES_STALL;/* Set endpoint 2 IN STALL */
break;
case 0x02:
UEP2_CTRL = UEP2_CTRL & (~bUEP_R_TOG) | UEP_R_RES_STALL;/* Set endpoint 2 OUT Stall */
break;
case 0x81:
UEP1_CTRL = UEP1_CTRL & (~bUEP_T_TOG) | UEP_T_RES_STALL;/* Set endpoint 1 IN STALL */
break;
case 0x01:
UEP1_CTRL = UEP1_CTRL & (~bUEP_R_TOG) | UEP_R_RES_STALL;/* Set endpoint 1 OUT Stall */
default:
len = 0xFF; /* operation failed */
break;
}
}
else
{
len = 0xFF; /* operation failed */
}
}
else
{
len = 0xFF; /* operation failed */
}
break;
case USB_GET_STATUS:
Ep0Buffer[0] = 0x00;
Ep0Buffer[1] = 0x00;
if ( SetupLen >= 2 )
{
len = 2;
}
else
{
len = SetupLen;
}
break;
default:
len = 0xff; //operation failed
break;
}
}
}
else
{
len = 0xff; //Packet length error
}
if(len == 0xff)
{
SetupReq = 0xFF;
UEP0_CTRL = bUEP_R_TOG | bUEP_T_TOG | UEP_R_RES_STALL | UEP_T_RES_STALL;//STALL
}
else if(len <= DEFAULT_ENDP0_SIZE) //Upload data or status phase returns 0 length packet
{
UEP0_T_LEN = len;
UEP0_CTRL = bUEP_R_TOG | bUEP_T_TOG | UEP_R_RES_ACK | UEP_T_RES_ACK;//The default packet is DATA1Return response ACK
}
else
{
UEP0_T_LEN = 0; //Although it has not yet reached the status stage, it is preset to upload 0-length data packets in advance to prevent the host from entering the status stage early.
UEP0_CTRL = bUEP_R_TOG | bUEP_T_TOG | UEP_R_RES_ACK | UEP_T_RES_ACK; //The default data packet is DATA1, and the response ACK is returned
}
break;
case UIS_TOKEN_IN | 0: //endpoint0 IN
switch(SetupReq)
{
case USB_GET_DESCRIPTOR:
len = SetupLen >= DEFAULT_ENDP0_SIZE ? DEFAULT_ENDP0_SIZE : SetupLen; //The length of this transmission
memcpy( Ep0Buffer, pDescr, len ); //Load upload data
SetupLen -= len;
pDescr += len;
UEP0_T_LEN = len;
UEP0_CTRL ^= bUEP_T_TOG; //Sync flag flip
break;
case USB_SET_ADDRESS:
USB_DEV_AD = USB_DEV_AD & bUDA_GP_BIT | SetupLen;
UEP0_CTRL = UEP_R_RES_ACK | UEP_T_RES_NAK;
break;
default:
UEP0_T_LEN = 0; //The status phase is completed and interrupted or the 0-length data packet is forced to be uploaded to end the control transmission.
UEP0_CTRL = UEP_R_RES_ACK | UEP_T_RES_NAK;
break;
}
break;
case UIS_TOKEN_OUT | 0: // endpoint0 OUT
if(SetupReq ==SET_LINE_CODING) // Set serial port properties
{
if( U_TOG_OK )
{
memcpy(LineCoding,UsbSetupBuf,USB_RX_LEN);
Config_Uart1(LineCoding);
UEP0_T_LEN = 0;
UEP0_CTRL |= UEP_R_RES_ACK | UEP_T_RES_ACK; // Prepare to upload 0 packages
}
}
else
{
UEP0_T_LEN = 0;
UEP0_CTRL |= UEP_R_RES_ACK | UEP_T_RES_NAK; // Status phase, responds to IN with NAK
}
break;
default:
break;
}
UIF_TRANSFER = 0; //Writing 0 clears the interrupt
}
if(UIF_BUS_RST) //Device mode USB bus reset interrupt
{
#ifdef DE_PRINTF
printf( "reset\n" ); //sleep state
#endif
UEP0_CTRL = UEP_R_RES_ACK | UEP_T_RES_NAK;
UEP1_CTRL = bUEP_AUTO_TOG | UEP_T_RES_NAK;
UEP2_CTRL = bUEP_AUTO_TOG | UEP_T_RES_NAK | UEP_R_RES_ACK;
USB_DEV_AD = 0x00;
UIF_SUSPEND = 0;
UIF_TRANSFER = 0;
UIF_BUS_RST = 0; //clear interrupt flag
Uart_Input_Point = 0; //Circular buffer input pointer
Uart_Output_Point = 0; //Circular buffer read pointer
UartByteCount = 0; //The number of bytes remaining in the current buffer to be fetched
USBByteCount = 0; //USB endpoint received length
UsbConfig = 0; //Clear configuration values
UpPoint2_Busy = 0;
}
if (UIF_SUSPEND) //USB bus suspend/wake completed
{
UIF_SUSPEND = 0;
if ( USB_MIS_ST & bUMS_SUSPEND ) //hang
{
#ifdef DE_PRINTF
printf( "suspend\n" ); //sleep state
#endif
while ( XBUS_AUX & bUART0_TX )
{
; //Wait for sending to complete
}
SAFE_MOD = 0x55;
SAFE_MOD = 0xAA;
WAKE_CTRL = bWAK_BY_USB | bWAK_RXD0_LO | bWAK_RXD1_LO; //Can be woken up when there is a signal from USB or RXD0/1
PCON |= PD; //sleep
SAFE_MOD = 0x55;
SAFE_MOD = 0xAA;
WAKE_CTRL = 0x00;
}
}
else { //Unexpected interruption, impossible situation
USB_INT_FG = 0xFF; //clear interrupt flag
}
}
/*******************************************************************************
* Function Name : Uart1_ISR()
* Description : Serial port receiving interrupt function to realize circular buffer receiving
*******************************************************************************/
void Uart1_ISR(void) __interrupt (INT_NO_UART1)
{
if(U1RI) //data received
{
Receive_Uart_Buf[Uart_Input_Point++] = SBUF1;
if(Uart_Input_Point>=UART_REV_LEN) {
Uart_Input_Point = 0; //Write pointer
}
U1RI = 0;
}
}
uint8_t uart_byte_count() {
uint8_t in = Uart_Input_Point;
uint8_t out = Uart_Output_Point;
if (in < out) {
in = in + UART_REV_LEN;
}
return in - out;
}
//main function
main()
{
uint8_t length;
uint8_t Uart_Timeout = 0;
uint8_t USB_output_buffer[64] = {0};
uint8_t USB_output_buffer_remain = 0;
CfgFsys( ); // CH559 clock selection configuration
mDelaymS(5); // Modify the main frequency and wait for the internal crystal to stabilize, which must be added
mInitSTDIO( ); // Serial port 0, can be used for debugging
UART1Setup( ); // For CDC
#ifdef DE_PRINTF
printf("start ...\n");
#endif
USBDeviceCfg();
USBDeviceEndPointCfg(); // Endpoint configuration
USBDeviceIntCfg(); //Interrupt initialization
UEP0_T_LEN = 0;
UEP1_T_LEN = 0; //Pre-use send length must be cleared
UEP2_T_LEN = 0; //Pre-use send length must be cleared
// Enable GPIO debugging on p1.4 and p1.5
// gpio_init();
// gpio_unset(0x10);
// gpio_unset(0x20);
while(1)
{
if(UsbConfig)
{
if(USBByteCount) // USB receiving endpoint has data
{
memcpy(USB_output_buffer, Ep2Buffer, USBByteCount);
USB_output_buffer_remain = USBByteCount;
USBBufOutPoint = 0;
USBByteCount = 0;
}
if(USB_output_buffer_remain)
{
CH554UART1SendByte(USB_output_buffer[USBBufOutPoint++]);
USB_output_buffer_remain--;
if(USB_output_buffer_remain==0) {
UEP2_CTRL = UEP2_CTRL & ~ MASK_UEP_R_RES | UEP_R_RES_ACK;
}
}
UartByteCount = uart_byte_count();
if(UartByteCount) {
Uart_Timeout++;
}
if(!UpPoint2_Busy) // The endpoint is not busy (the first packet of data after idle, only used to trigger upload)
{
length = UartByteCount;
if(length>0)
{
if(length>39 || Uart_Timeout>100)
{
Uart_Timeout = 0;
// if we reach a wrap-around, just transmit from index to end of buffer.
// The rest goes in next packet, i.e., not handling wrap-around.
if(Uart_Output_Point+length>UART_REV_LEN) {
length = UART_REV_LEN-Uart_Output_Point;
}
// write upload endpoint
memcpy(Ep2Buffer+MAX_PACKET_SIZE,&Receive_Uart_Buf[Uart_Output_Point],length);
Uart_Output_Point+=length;
if (Uart_Output_Point>=UART_REV_LEN) {
Uart_Output_Point = 0;
}
UEP2_T_LEN = length; // Pre-use send length must be cleared
UEP2_CTRL = UEP2_CTRL & ~ MASK_UEP_T_RES | UEP_T_RES_ACK; // Answer ACK
UpPoint2_Busy = 1;
// Should according to the USB-spec check if
// length == 64, if so we should send a
// zero-length USB packet. This is very
// unlikley to happen.
}
}
}
// Should have a timeout if the transfer for some reason
// fails to reset UpPoint2_Busy. But does not seem to
// happen.
}
}
}

View file

@ -1,15 +0,0 @@
#ifndef USB_STRINGS
#define USB_STRINGS
unsigned char __code Prod_Des[]={ // "MTA1-USB-V1"
0x18, 0x03, 0x4d, 0x00, 0x54, 0x00, 0x41, 0x00, 0x31, 0x00, 0x2d, 0x00, 0x55, 0x00, 0x53, 0x00, 0x42, 0x00, 0x2d, 0x00, 0x56, 0x00, 0x31, 0x00
};
unsigned char __code Manuf_Des[]={ // "Tillitis"
0x12, 0x03, 0x54, 0x00, 0x69, 0x00, 0x6c, 0x00, 0x6c, 0x00, 0x69, 0x00, 0x74, 0x00, 0x69, 0x00, 0x73, 0x00
};
unsigned char __code SerDes[]={ // "68de5d27-e223-4874-bc76-a54d6e84068f"
0x4a, 0x03, 0x36, 0x00, 0x38, 0x00, 0x64, 0x00, 0x65, 0x00, 0x35, 0x00, 0x64, 0x00, 0x32, 0x00, 0x37, 0x00, 0x2d, 0x00, 0x65, 0x00, 0x32, 0x00, 0x32, 0x00, 0x33, 0x00, 0x2d, 0x00, 0x34, 0x00, 0x38, 0x00, 0x37, 0x00, 0x34, 0x00, 0x2d, 0x00, 0x62, 0x00, 0x63, 0x00, 0x37, 0x00, 0x36, 0x00, 0x2d, 0x00, 0x61, 0x00, 0x35, 0x00, 0x34, 0x00, 0x64, 0x00, 0x36, 0x00, 0x65, 0x00, 0x38, 0x00, 0x34, 0x00, 0x30, 0x00, 0x36, 0x00, 0x38, 0x00, 0x66, 0x00
};
#endif