testfw: Remove test_ prefix on UART functions

This commit is contained in:
Michael Cardell Widerkrantz 2022-12-02 16:11:53 +01:00
parent 65bc96a725
commit 3220d1c119
No known key found for this signature in database
GPG Key ID: D3DB3DDF57E704E5

View File

@ -28,21 +28,21 @@ volatile uint32_t *trng_entropy = (volatile uint32_t *)TK1_MMIO_TRNG_ENTROPY;
// TODO Real UDA is 4 words (16 bytes) // TODO Real UDA is 4 words (16 bytes)
#define UDA_WORDS 1 #define UDA_WORDS 1
void test_puts(char *reason) void puts(char *reason)
{ {
for (char *c = reason; *c != '\0'; c++) { for (char *c = reason; *c != '\0'; c++) {
writebyte(*c); writebyte(*c);
} }
} }
void test_putsn(char *p, int n) void putsn(char *p, int n)
{ {
for (int i = 0; i < n; i++) { for (int i = 0; i < n; i++) {
writebyte(p[i]); writebyte(p[i]);
} }
} }
void test_puthex(uint8_t c) void puthex(uint8_t c)
{ {
unsigned int upper = (c >> 4) & 0xf; unsigned int upper = (c >> 4) & 0xf;
unsigned int lower = c & 0xf; unsigned int lower = c & 0xf;
@ -50,14 +50,14 @@ void test_puthex(uint8_t c)
writebyte(lower < 10 ? '0' + lower : 'a' - 10 + lower); writebyte(lower < 10 ? '0' + lower : 'a' - 10 + lower);
} }
void test_puthexn(uint8_t *p, int n) void puthexn(uint8_t *p, int n)
{ {
for (int i = 0; i < n; i++) { for (int i = 0; i < n; i++) {
test_puthex(p[i]); puthex(p[i]);
} }
} }
void test_reverseword(uint32_t *wordp) void reverseword(uint32_t *wordp)
{ {
*wordp = ((*wordp & 0xff000000) >> 24) | ((*wordp & 0x00ff0000) >> 8) | *wordp = ((*wordp & 0xff000000) >> 24) | ((*wordp & 0x00ff0000) >> 8) |
((*wordp & 0x0000ff00) << 8) | ((*wordp & 0x000000ff) << 24); ((*wordp & 0x0000ff00) << 8) | ((*wordp & 0x000000ff) << 24);
@ -81,17 +81,17 @@ int main()
// Wait for terminal program and a character to be typed // Wait for terminal program and a character to be typed
in = readbyte(); in = readbyte();
test_puts("I'm testfw on:"); puts("I'm testfw on:");
// Output the TK1 core's NAME0 and NAME1 // Output the TK1 core's NAME0 and NAME1
uint32_t name; uint32_t name;
wordcpy(&name, (void *)tk1name0, 1); wordcpy(&name, (void *)tk1name0, 1);
test_reverseword(&name); reverseword(&name);
test_putsn((char *)&name, 4); putsn((char *)&name, 4);
test_puts(" "); puts(" ");
wordcpy(&name, (void *)tk1name1, 1); wordcpy(&name, (void *)tk1name1, 1);
test_reverseword(&name); reverseword(&name);
test_putsn((char *)&name, 4); putsn((char *)&name, 4);
test_puts("\r\n"); puts("\r\n");
int anyfailed = 0; int anyfailed = 0;
@ -101,13 +101,13 @@ int main()
// Should get non-empty UDS // Should get non-empty UDS
wordcpy(uds_local, (void *)uds, 8); wordcpy(uds_local, (void *)uds, 8);
if (memeq(uds_local, uds_zeros, 8 * 4)) { if (memeq(uds_local, uds_zeros, 8 * 4)) {
test_puts("FAIL: UDS empty\r\n"); puts("FAIL: UDS empty\r\n");
anyfailed = 1; anyfailed = 1;
} }
// Should NOT be able to read from UDS again // Should NOT be able to read from UDS again
wordcpy(uds_local, (void *)uds, 8); wordcpy(uds_local, (void *)uds, 8);
if (!memeq(uds_local, uds_zeros, 8 * 4)) { if (!memeq(uds_local, uds_zeros, 8 * 4)) {
test_puts("FAIL: Read UDS a second time\r\n"); puts("FAIL: Read UDS a second time\r\n");
anyfailed = 1; anyfailed = 1;
} }
@ -128,7 +128,7 @@ int main()
// Should get non-empty UDI // Should get non-empty UDI
wordcpy(udi_local, (void *)udi, 2); wordcpy(udi_local, (void *)udi, 2);
if (memeq(udi_local, udi_zeros, 2 * 4)) { if (memeq(udi_local, udi_zeros, 2 * 4)) {
test_puts("FAIL: UDI empty\r\n"); puts("FAIL: UDI empty\r\n");
anyfailed = 1; anyfailed = 1;
} }
@ -140,20 +140,20 @@ int main()
wordcpy((void *)cdi, cdi_writetest, 8); wordcpy((void *)cdi, cdi_writetest, 8);
wordcpy(cdi_readback, (void *)cdi, 8); wordcpy(cdi_readback, (void *)cdi, 8);
if (!memeq(cdi_writetest, cdi_readback, 8 * 4)) { if (!memeq(cdi_writetest, cdi_readback, 8 * 4)) {
test_puts("FAIL: Can't write CDI in fw mode\r\n"); puts("FAIL: Can't write CDI in fw mode\r\n");
anyfailed = 1; anyfailed = 1;
} }
// Test FW-RAM. // Test FW-RAM.
*fw_ram = 0x12; *fw_ram = 0x12;
if (*fw_ram != 0x12) { if (*fw_ram != 0x12) {
test_puts("FAIL: Can't write and read FW RAM in fw mode\r\n"); puts("FAIL: Can't write and read FW RAM in fw mode\r\n");
anyfailed = 1; anyfailed = 1;
} }
uint32_t sw = *switch_app; uint32_t sw = *switch_app;
if (sw != 0) { if (sw != 0) {
test_puts("FAIL: switch_app is not 0 in fw mode\r\n"); puts("FAIL: switch_app is not 0 in fw mode\r\n");
anyfailed = 1; anyfailed = 1;
} }
@ -163,14 +163,14 @@ int main()
sw = *switch_app; sw = *switch_app;
if (sw != 0xffffffff) { if (sw != 0xffffffff) {
test_puts("FAIL: switch_app is not 0xffffffff in app mode\r\n"); puts("FAIL: switch_app is not 0xffffffff in app mode\r\n");
anyfailed = 1; anyfailed = 1;
} }
// Should NOT be able to read from UDS in app-mode. // Should NOT be able to read from UDS in app-mode.
wordcpy(uds_local, (void *)uds, 8); wordcpy(uds_local, (void *)uds, 8);
if (!memeq(uds_local, uds_zeros, 8 * 4)) { if (!memeq(uds_local, uds_zeros, 8 * 4)) {
test_puts("FAIL: Read from UDS in app-mode\r\n"); puts("FAIL: Read from UDS in app-mode\r\n");
anyfailed = 1; anyfailed = 1;
} }
@ -191,18 +191,18 @@ int main()
wordcpy((void *)cdi, cdi_zeros, 8); wordcpy((void *)cdi, cdi_zeros, 8);
wordcpy(cdi_local2, (void *)cdi, 8); wordcpy(cdi_local2, (void *)cdi, 8);
if (!memeq(cdi_local, cdi_local2, 8 * 4)) { if (!memeq(cdi_local, cdi_local2, 8 * 4)) {
test_puts("FAIL: Write to CDI in app-mode\r\n"); puts("FAIL: Write to CDI in app-mode\r\n");
anyfailed = 1; anyfailed = 1;
} }
// Test FW-RAM. // Test FW-RAM.
*fw_ram = 0x21; *fw_ram = 0x21;
if (*fw_ram == 0x21) { if (*fw_ram == 0x21) {
test_puts("FAIL: Write and read FW RAM in app-mode\r\n"); puts("FAIL: Write and read FW RAM in app-mode\r\n");
anyfailed = 1; anyfailed = 1;
} }
test_puts("Testing timer...\r\n"); puts("Testing timer...\r\n");
// Matching clock at 18 MHz, giving us timer in seconds // Matching clock at 18 MHz, giving us timer in seconds
*timer_prescaler = 18 * 1000000; *timer_prescaler = 18 * 1000000;
@ -229,37 +229,37 @@ int main()
*timer_ctrl = 1; *timer_ctrl = 1;
if (!(*timer_status & (1 << TK1_MMIO_TIMER_STATUS_READY_BIT))) { if (!(*timer_status & (1 << TK1_MMIO_TIMER_STATUS_READY_BIT))) {
test_puts("FAIL: Timer didn't stop\r\n"); puts("FAIL: Timer didn't stop\r\n");
anyfailed = 1; anyfailed = 1;
} }
if (*timer != 10) { if (*timer != 10) {
test_puts("FAIL: Timer didn't reset to 10\r\n"); puts("FAIL: Timer didn't reset to 10\r\n");
anyfailed = 1; anyfailed = 1;
} }
// Check and display test results. // Check and display test results.
if (anyfailed) { if (anyfailed) {
test_puts("Some test FAILED!\r\n"); puts("Some test FAILED!\r\n");
} else { } else {
test_puts("All tests passed.\r\n"); puts("All tests passed.\r\n");
} }
test_puts("\r\nHere are 256 bytes from the TRNG:\r\n"); puts("\r\nHere are 256 bytes from the TRNG:\r\n");
for (int j = 0; j < 8; j++) { for (int j = 0; j < 8; j++) {
for (int i = 0; i < 8; i++) { for (int i = 0; i < 8; i++) {
while ((*trng_status & while ((*trng_status &
(1 << TK1_MMIO_TRNG_STATUS_READY_BIT)) == 0) { (1 << TK1_MMIO_TRNG_STATUS_READY_BIT)) == 0) {
} }
uint32_t rnd = *trng_entropy; uint32_t rnd = *trng_entropy;
test_puthexn((uint8_t *)&rnd, 4); puthexn((uint8_t *)&rnd, 4);
test_puts(" "); puts(" ");
} }
test_puts("\r\n"); puts("\r\n");
} }
test_puts("\r\n"); puts("\r\n");
test_puts("Now echoing what you type...\r\n"); puts("Now echoing what you type...\r\n");
for (;;) { for (;;) {
in = readbyte(); // blocks in = readbyte(); // blocks
writebyte(in); writebyte(in);