textfiles-politics/pythonCode/personTestingOutput/coldfusi.xml

190 lines
8.6 KiB
XML

<xml><p> Host Element Fusion</p>
<p> Unpublished Work
Copyright (c) 1990
Earl <ent type='PERSON'>Laurence Lovings</ent></p>
<p>1. Proton (1 <ent type='ORG'>Hydrogen</ent> 1) Energy: 938.3 <ent type='PERSON'>Mev</ent> = 1.007825 amu
2. Neutron (1 Neutron 0) Energy: 939.6 <ent type='PERSON'>Mev</ent> = 1.008665 amu
3. Deuterium (2 <ent type='ORG'>Hydrogen</ent> 1) = 2.014102 amu
4. [(1 Neutron 0) + (1 <ent type='ORG'>Hydrogen</ent> 1) - electron] =
(939.6 <ent type='PERSON'>Mev</ent> + 938.3 <ent type='PERSON'>Mev</ent> - .511 <ent type='PERSON'>Mev</ent>) = 1877.389 <ent type='PERSON'>Mev</ent> =
2.015447128 amu
5. [(1 Neutron 0) - (1 <ent type='ORG'>Hydrogen</ent> 1) + electron] =
(939.6 <ent type='PERSON'>Mev</ent> - 938.3 <ent type='PERSON'>Mev</ent> + .511 <ent type='PERSON'>Mev</ent>) = 1.811 <ent type='PERSON'>Mev</ent> =
1.9441763 x 10 - 03 amu
6. (105 Palladium 46) = 104.905064 amu
7. (103 Rhodium 45) = 102.905511 amu</p>
<p>The host element fusion experiment begins with a Palladium
electrode submersed in Deuterium. A energy source is supplied,
which enables the fusion process to begin. My theory on this
subject is explained below:</p>
<p>The Deuterium atoms are allowed inside the Palladium electrode due
to the electric field on the electrode. Once the Deuterium atoms
are inside, the Deuterium causes the Palladium to become unstable.
This is done by this process:</p>
<p>[ (105 Pd 46 - (1 Neutron 0 + 1 <ent type='ORG'>Hydrogen</ent> 1 - electron) +
(1 Neutron 0 - 1 <ent type='ORG'>Hydrogen</ent> 1 + electron)] or,
[ 104.905064 amu - 2.015447128 amu + 1.9441763 x 10-03 amu] =
102.8916 amu.</p>
<p>The closest element Palladium can try to become stable is
(103 Rhodium 45).</p>
<p>Take Palladium's new mass and subtract it with Rhodium's mass.
(103 Rhodium 45) - 102.8916 amu, or
102.905511 amu - 102.8916 amu = 1.394653 x 10-02 amu.</p>
<p>To find out how many electrons that is equivalent to:
(1.394653 x 10-02 amu x 931.5 <ent type='PERSON'>Mev</ent>/amu)/(.511 <ent type='PERSON'>Mev</ent>/electrons) =
25.42309 electrons</p>
<p>This is the amount of electrons required to be ionized to enable
host element fusion with Deuterium. </p>
<p>That is the first process of host element fusion. </p>
<p>The second process begins when the ionized electrons from the
palladium atom shields the deuterium atoms to allow host element
fusion.</p>
<p> The Equation:</p>
<p>Q = [(2 <ent type='ORG'>Hydrogen</ent> 1) + (2 <ent type='ORG'>Hydrogen</ent> 1) + (25.423 e) -
(1877.389 <ent type='PERSON'>Mev</ent>) + (1.811 <ent type='PERSON'>Mev</ent>) - (2 <ent type='ORG'>Hydrogen</ent> 1)] x 931.5 <ent type='PERSON'>Mev</ent> or,</p>
<p>Q = [(2.014102 amu + 2.014102 amu + .01394653 amu - 2.015447 amu
+ 1.944176 x 10-03 amu - 2.014102 amu)] x 931.5 <ent type='PERSON'>Mev</ent></p>
<p>Q = 13.55 <ent type='PERSON'>Mev</ent></p>
<p>You must realize for this process to work for host element fusion,
you have to have a host element before Deuterium will fuse.
My equation also theoretically works for known Deuterium fusion
processes.</p>
<p> Known Equation:</p>
<p>1. [(2 <ent type='ORG'>Hydrogen</ent> 1) + (2 <ent type='ORG'>Hydrogen</ent> 1)] -&gt; (3 Helium 2) +
(1 Neutron 0)] = or,</p>
<p> [(2.014102 amu + 2.014102 amu - 3.016030 amu - 1.008665 amu) x
(931.5 <ent type='PERSON'>Mev</ent>/amu)] = Q = 3.27 <ent type='PERSON'>Mev</ent></p>
<p>My Equation: </p>
<p>Host Element = (3 Helium 2) + (1 Neutron 0)
[(3 Helium 2) + (1 Neutron 0) - 1877.389 <ent type='PERSON'>Mev</ent> + 1.811 <ent type='PERSON'>Mev</ent>] =
[3.016030 amu + 1.008665 amu - 2.015447 amu + 1.944176x10-03 amu]
= 2.011192 amu</p>
<p>The element whose mass is closest to the new unstable "element" is
(2 <ent type='ORG'>Hydrogen</ent> 1)</p>
<p>(2.014102 amu) - 2.011192 amu = 2.909899 x 10-03 amu excess mass
convert to electrons</p>
<p>(2.909899 x 10-03 amu x 931.5 <ent type='PERSON'>Mev</ent>/amu) /(.511 <ent type='PERSON'>Mev</ent>/electrons) =
5.304445 electrons</p>
<p>Now the fusion of Deuterium atoms
[(2 <ent type='ORG'>Hydrogen</ent> 1) + (2 <ent type='ORG'>Hydrogen</ent> 1) + 5.30444e - 1877.389 <ent type='PERSON'>Mev</ent>
+ 1.811 <ent type='PERSON'>Mev</ent> - (2 <ent type='ORG'>Hydrogen</ent> 1)] x 931.5 <ent type='PERSON'>Mev</ent> =
[(2.014102 amu + 2.014102 amu + 2.909899x10-03 amu - 2.015447 amu
+ 1.944176x10-03 amu - 2.014102 amu)] x (931.5 <ent type='PERSON'>Mev</ent>/amu)</p>
<p>Q = 3.27 <ent type='PERSON'>Mev</ent></p>
<p> Known Equation:</p>
<p>2. [(2 <ent type='ORG'>Hydrogen</ent> 1) + (2 <ent type='ORG'>Hydrogen</ent> 1) -&gt; (4 Helium 2)] = or,
[(2.014102 amu + 2.014102 amu - 4.002603 amu)] x
(931.5 <ent type='PERSON'>Mev</ent>/amu) = Q = 23.85 <ent type='PERSON'>Mev</ent>
My Equation: </p>
<p>Host Element = (4 Helium 2)
[(4 Helium 2) - 1877.389 <ent type='PERSON'>Mev</ent> + 1.811 <ent type='PERSON'>Mev</ent>] =
[(4.002603 amu - 2.015447 amu + 1.944176x10-03 amu)] = 1.9891 amu</p>
<p>The element whose mass is closest to the new unstable "element" is
(2 <ent type='ORG'>Hydrogen</ent> 1)</p>
<p>(2.014102 amu) - 1.9891 amu = 2.500188 x 10-02 amu excess mass
convert to electrons</p>
<p>(2.500188 x 10-02 amu x 931.5 <ent type='PERSON'>Mev</ent>/amu) /(.511 <ent type='PERSON'>Mev</ent>/electrons) =
45.57585 electrons</p>
<p>Now the fusion of Deuterium atoms
[(2 <ent type='ORG'>Hydrogen</ent> 1) + (2 <ent type='ORG'>Hydrogen</ent> 1) + 45.58 electrons - 1877.389 <ent type='PERSON'>Mev</ent>
+ 1.811 <ent type='PERSON'>Mev</ent> - (2 <ent type='ORG'>Hydrogen</ent> 1)] x 931.5 <ent type='PERSON'>Mev</ent> =
[(2.014102 amu + 2.014102 amu + 2.500188x10-02 amu - 2.015447 amu
+ 1.944176x10-03 amu - 2.014102 amu)] x (931.5 <ent type='PERSON'>Mev</ent>/amu) =</p>
<p>Q = 23.85 <ent type='PERSON'>Mev</ent></p>
<p> Known Equation:</p>
<p>3. [(2 <ent type='ORG'>Hydrogen</ent> 1) + (2 <ent type='ORG'>Hydrogen</ent> 1) -&gt; (3 <ent type='ORG'>Hydrogen</ent> 1) +
(1 <ent type='ORG'>Hydrogen</ent> 1) = or,</p>
<p>[(2.014102 amu + 2.014102 amu - 3.016050 amu - 1.007825 amu)] x
(931.5 <ent type='PERSON'>Mev</ent>/amu) = Q = 4.03 <ent type='PERSON'>Mev</ent></p>
<p>My Equation: </p>
<p>Host Element = (3 <ent type='ORG'>Hydrogen</ent> 1) + (1 <ent type='ORG'>Hydrogen</ent> 1)
[(3 <ent type='ORG'>Hydrogen</ent> 1) + ( 1 <ent type='ORG'>Hydrogen</ent> 1) - 1877.389 <ent type='PERSON'>Mev</ent> + 1.811 <ent type='PERSON'>Mev</ent>] =
[3.016050 amu + 1.007825 amu - 2.015447 amu + 1.944176x10-03 amu]
= 2.010372 amu</p>
<p>The element whose mass is closest to the new unstable "element" is
(2 <ent type='ORG'>Hydrogen</ent> 1)</p>
<p>(2.014102 amu - 2.010372 amu) = 3.729582x10-03 amu excess mass
convert to electrons</p>
<p>(3.729582x10-03 amu x 931.5 <ent type='PERSON'>Mev</ent>/amu)/(.511 <ent type='PERSON'>Mev</ent>/electrons) =
6.798641 electrons</p>
<p>Now the fusion of Deuterium atoms
[(2 <ent type='ORG'>Hydrogen</ent> 1) + (2 <ent type='ORG'>Hydrogen</ent> 1) + 6.799 electrons - 1877.389 <ent type='PERSON'>Mev</ent>
+ 1.811 <ent type='PERSON'>Mev</ent> - (2 <ent type='ORG'>Hydrogen</ent> 1)] x 931.5 <ent type='PERSON'>Mev</ent> =
[(2.014102 amu + 2.014102 amu + 3.7296x10-03 amu - 2.015447 amu +
1.944176x10-03 amu - 2.014102 amu)] x (931.5 <ent type='PERSON'>Mev</ent>/amu) =
Q = 4.03 <ent type='PERSON'>Mev</ent></p>
<p> Known Equation:</p>
<p>4. [(1 <ent type='ORG'>Hydrogen</ent> 1) + (1 <ent type='ORG'>Hydrogen</ent>) -&gt; (2 <ent type='ORG'>Hydrogen</ent> 1) +(electron)=
[(1.007825 amu + 1.007825 amu - 2 electrons - 2.014102 amu)]
x (931.5 <ent type='PERSON'>Mev</ent>/amu) = Q = .42 <ent type='PERSON'>Mev</ent></p>
<p>My Equation:</p>
<p>Host Element = (2 <ent type='ORG'>Hydrogen</ent> 1)
[(2 <ent type='ORG'>Hydrogen</ent> 1) - 1877.389 <ent type='PERSON'>Mev</ent> + 1.811 <ent type='PERSON'>Mev</ent>] =
[(2.014102 amu - 2.015447128 amu + 1.9441763x10-03 amu)] =
5.990302x10-04 amu</p>
<p>The element whose mass is closest to the new unstable "element"
is (1 <ent type='ORG'>Hydrogen</ent> 1)</p>
<p>(1.007825 amu - 5.990302x10-03 amu) = 1.007226 amu excess mass
convert to neutrinos</p>
<p>(1.007226 amu x 931.5 <ent type='PERSON'>Mev</ent>/amu) / (.42 <ent type='PERSON'>Mev</ent>/neutrinos) =
2233.884 neutrinos</p>
<p>Now the fusion of 1 <ent type='ORG'>Hydrogen</ent> 1 atoms</p>
<p>[(1 <ent type='ORG'>Hydrogen</ent> 1) + (1 <ent type='ORG'>Hydrogen</ent> 1) + 2234 neutrinos - 2 electrons
- 1877.389 <ent type='PERSON'>Mev</ent> + 1.811 <ent type='PERSON'>Mev</ent> - (1 <ent type='ORG'>Hydrogen</ent>)] x 931.5 <ent type='PERSON'>Mev</ent>/amu =
[(1.007825 amu + 1.007825 amu + 1.007226 amu - .001097 amu
-2.015447128 amu + 1.9441763x10-03 amu - 1.007825 amu)]
x 931.5 <ent type='PERSON'>Mev</ent>/amu = Q = .42 <ent type='PERSON'>Mev</ent>
</p></xml>