mirror of
https://github.com/nhammer514/textfiles-politics.git
synced 2025-05-08 01:25:02 -04:00
work on Python with Jermaine
This commit is contained in:
parent
1f771f237a
commit
01b77812fe
691 changed files with 305465 additions and 61600 deletions
152
pythonCode/cultureTagger.py
Normal file
152
pythonCode/cultureTagger.py
Normal file
|
@ -0,0 +1,152 @@
|
|||
import spacy
|
||||
from collections import Counter
|
||||
import re as regex
|
||||
import os
|
||||
from saxonche import PySaxonProcessor
|
||||
|
||||
|
||||
#### Loads all of the necessary variables and functions.
|
||||
nlp = spacy.load("en_core_web_lg")
|
||||
|
||||
|
||||
|
||||
#########################################################################################
|
||||
# ebb: After reading the NLP output, we know spaCy is making some mistakes.
|
||||
# So, here let's try adding an EntityRuler to customize spaCy's classification. We need
|
||||
# to configure this BEFORE we send the tokens off to nlp() for processing.
|
||||
##########################################################################################
|
||||
# Create the EntityRuler and set it so the ner comes after, so OUR rules take precedence
|
||||
# Sources:
|
||||
# W. J. B. Mattingly: https://ner.pythonhumanities.com/02_01_spaCy_Entity_Ruler.html
|
||||
# spaCy documentation on NER Entity Ruler: https://spacy.io/usage/rule-based-matching#entityruler
|
||||
config = {"spans_key": None, "annotate_ents": True, "overwrite": True, "validate": True}
|
||||
ruler = nlp.add_pipe("span_ruler", before="ner", config=config)
|
||||
# 2023-04-07: ebb: NOTE: before="ner" setting seems to allow the spaCy NER rules to prevail over these patterns where
|
||||
# there is a conflict.
|
||||
# after="ner" means that the spaCy ner is TOTALLY OVERWRITTEN and invalidated by our patterns.
|
||||
|
||||
# Notes: Mattingly has this: ruler = nlp.add_pipe("entity_ruler", after="ner", config={"validate": True})
|
||||
# But this only works when spaCy doesn't recognize a word / phrase as a named entity of any kind.
|
||||
# If it recognizes a named entity but tags it wrong, we correct it with the span_ruler, not the entity_ruler
|
||||
patterns = [
|
||||
{"label": "NULL", "pattern": [{"TEXT" : {"REGEX": "^-\w+?"}}]},
|
||||
{"label": "NULL", "pattern": [{"TEXT" : {"REGEX": "^\w$"}}]},
|
||||
{"label": "GPE", "pattern": [{"TEXT" : {"REGEX": "Babylon(ia)?"}}]},
|
||||
{"label": "NULL", "pattern": "di"},
|
||||
{"label": "ORG", "pattern": "Falangist"},
|
||||
{"label": "NORP", "pattern": "Dropa"},
|
||||
{"label": "GPE", "pattern": "Nazareth"},
|
||||
{"label": "NULL", "pattern": "Bab"},
|
||||
]
|
||||
ruler.add_patterns(patterns)
|
||||
|
||||
|
||||
workingDir = os.getcwd()
|
||||
CollPath = os.path.join(workingDir, '../regexConsp')
|
||||
outputPath = os.path.join(workingDir, 'cultureTaggedOutput/')
|
||||
# Everything in original conspiracy directory.
|
||||
insideDir = os.listdir(CollPath)
|
||||
print(insideDir)
|
||||
|
||||
# Copies files in case they do not exist
|
||||
def copyTextFiles(file):
|
||||
content = []
|
||||
# Reads the contents of file, and saves each line of file into the content array.
|
||||
with open(CollPath + "/" + file, 'r', encoding='utf8') as inFile:
|
||||
for line in inFile:
|
||||
content.append(line)
|
||||
print(" ~~~~~~~~~~~~~~~~~~~~~~~~~~~ copying " + file + " ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ")
|
||||
inFile.close()
|
||||
# With the contents copied, a loop will go through the array and write it all in a new file in output folder.
|
||||
with open(outputPath + "/" + file, 'w', encoding='utf8') as f:
|
||||
for line in content:
|
||||
f.write(str(line))
|
||||
|
||||
# Function runs through the tokens of given file. Entities are stored in array, then returned. Called by regexFile().
|
||||
def entitycollector(tokens):
|
||||
# creates a new file that includes all of the found entities.
|
||||
with open('output.txt', 'w') as f:
|
||||
entities = {}
|
||||
# goes through each entity in the token list.
|
||||
for ent in sorted(tokens.ents):
|
||||
entityInfo = [ent.text, ent.label_, spacy.explain(ent.label_)]
|
||||
stringify = str(entityInfo)
|
||||
f.write(stringify)
|
||||
f.write('\n')
|
||||
entities[ent.text] = ent.label_
|
||||
# return all entities with its label and text.
|
||||
return entities
|
||||
|
||||
# Function runs regex through given file.
|
||||
def regexFile(file):
|
||||
fileDir = os.path.join(outputPath, file)
|
||||
with PySaxonProcessor(license=False) as proc:
|
||||
# grabs the original xml file and stores it in a variable for later. this some xquery bs
|
||||
xml = open(fileDir, encoding='utf-8').read()
|
||||
xp = proc.new_xpath_processor()
|
||||
node = proc.parse_xml(xml_text=xml)
|
||||
xp.set_context(xdm_item=node)
|
||||
|
||||
# xquery goes through original text, and stores it all in a single string.
|
||||
xpath = xp.evaluate('//p ! normalize-space() => string-join()')
|
||||
string = str(xpath)
|
||||
|
||||
# regex goes through the text and deletes anything that is not a letter or space.
|
||||
cleanedText = regex.sub(r'[^A-z ]+', ' ', string)
|
||||
|
||||
# gets the tokens of the clean text.
|
||||
tokens = nlp(cleanedText)
|
||||
|
||||
wrappedText = xml
|
||||
# grabs all the entities in file and stores it in a list/array.
|
||||
dictEntities = entitycollector(tokens)
|
||||
# if anything exists in the list, the following code will run.
|
||||
if dictEntities:
|
||||
# it will check through each entity in the list and see its entity type. it is looking for "PERSON" tokens
|
||||
# in this instance, which includes of nouns and names.
|
||||
for entity, value in dictEntities.items():
|
||||
if value == "LOC" or value=="ORG" or value=="GPE" or value=="NORP":
|
||||
# key_template variable is the elements we wrap around found instances.
|
||||
key_template = "<ent type='" + value + "'>" + entity + "</ent>"
|
||||
# loops through wrappedText until all entities are wrapped.
|
||||
wrappedText = wrappedText.replace(entity, key_template)
|
||||
# Saves newly wrapped elements and then writes it into new file.
|
||||
with open(fileDir, 'w', encoding='utf8') as f:
|
||||
f.write(wrappedText)
|
||||
print("WRAPPING " + entity)
|
||||
|
||||
# This part of the code does not run. It is a WIP.
|
||||
## It tries to find weird or invalid elements/tags and fix them.
|
||||
def checkTags(file):
|
||||
content = []
|
||||
fileDir = os.path.join(outputPath, file)
|
||||
|
||||
with open(fileDir, 'r', encoding='utf8') as inFile:
|
||||
for line in inFile:
|
||||
content.append(line)
|
||||
# With the contents copied, a loop will go through the array and write it all in a new file in output folder.
|
||||
with open(fileDir, 'w', encoding='utf8') as f:
|
||||
for line in content:
|
||||
# match = regex.search(r"(<ent type='.+?'>[^<>]*?)<ent[^>]+?>([^<>]+?)</ent>([^<>]*?</ent>)", line)
|
||||
# if match:
|
||||
print("broken line found, fixing...")
|
||||
# newLine = regex.sub(r"(<ent type='.+?'>[^<>]*?)<ent[^>]+?>([^<>]+?)</ent>([^<>]*?</ent>)", r"\1\2\3",line)
|
||||
newLine = regex.sub(r"(<ent type=\"[A-z]+?\">.*?)<ent type=\"[A-z]+?\">(.+?)</ent>(.*?</ent>)", r"\1\2\3", line)
|
||||
newLine = regex.sub(r"(<ent type=\"[A-z]+?\">.*?)<ent type=\"[A-z]+?\">(.+?)</ent>(.*?</ent>)", r"\1\2\3", newLine)
|
||||
newLine = regex.sub(r"(<ent type=\"[A-z]+?\">.*?)<ent type=\"[A-z]+?\">(.+?)</ent>(.*?</ent>)", r"\1\2\3", newLine)
|
||||
newLine = regex.sub(r"(<spe)<ent type='.+?'>(cia)</ent>(l>)", r"\1\2\3", newLine)
|
||||
newLine = regex.sub(r"(<)<ent type='ORG'>(di)</ent>(v>)", r"\1\2\3", newLine)
|
||||
newLine = regex.sub(r"(<ent type=')<ent type='ORG'>(ORG)</ent>('>)", r"\1\2\3", newLine)
|
||||
#
|
||||
# <spe<ent type='ORG'>cia</ent>l>
|
||||
# <<ent type='ORG'>di</ent>v>
|
||||
print(line + "\n INTO.")
|
||||
line = newLine
|
||||
print(line)
|
||||
|
||||
|
||||
for file in insideDir:
|
||||
copyTextFiles(file)
|
||||
regexFile(file)
|
||||
#checkTags(file)
|
||||
print("File checking finished.")
|
Loading…
Add table
Add a link
Reference in a new issue