mirror of
https://github.com/autistic-symposium/tensorflow-for-deep-learning-py.git
synced 2025-05-10 10:45:04 -04:00
31 lines
966 B
Python
31 lines
966 B
Python
# compute the gradient numerically:
|
|
# a generic function takes a function f, a vector x o evaluate
|
|
# the gradient on, and returns the gradient of f at x:
|
|
|
|
def eval_numerical_gradient(f, x):
|
|
"""
|
|
a naive implementation of numerical gradient of f at x
|
|
- f should be a function that takes a single argument
|
|
- x is the point (numpy array) to evaluate the gradient at
|
|
"""
|
|
|
|
fx = f(x) # evaluate function value at original point
|
|
grad = np.zeros(x.shape)
|
|
h = 0.00001
|
|
|
|
# iterate over all indexes in x
|
|
it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
|
|
while not it.finished:
|
|
|
|
# evaluate function at x+h
|
|
ix = it.multi_index
|
|
old_value = x[ix]
|
|
x[ix] = old_value + h # increment by h
|
|
fxh = f(x) # evalute f(x + h)
|
|
x[ix] = old_value # restore to previous value (very important!)
|
|
|
|
# compute the partial derivative
|
|
grad[ix] = (fxh - fx) / h # the slope
|
|
it.iternext() # step to next dimension
|
|
|
|
return grad
|